
mentor.com/embedded

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Qt is a registered trade mark of Digia Plc and/or its subsidiaries. All other trademarks mentioned in this document are trademarks of their respective owners.

Shared Logging with the
Linux Kernel

www.mentor.com/embedded

Outline

� What and why of shared logging?

� Hey! Haven’t I seen this before?

� Kernel logging structures, then and now

� Design and Implementation

� Live Demo

� Current status

� Q&A / Discussion

www.mentor.com/embedded

What is shared logging?

� It’s really already in the name, but I’ll spell it out below

— (no, not #exactsteps ☺☺☺☺)

� Simply put, the bootloader and the kernel can read and
write log entries for themselves normally

and read log entries from the other

� For the bootloader, this implies that log entries persist
past reboots. For now, I have focused on shared volatile
RAM, but this could work for NV storage of logs as well.

www.mentor.com/embedded

Why would we want shared logging?

� Imagine debugging without logging.

— ☺

� Most common use case:

— Post-mortem analysis of a failed bootloader boot

— Post-mortem analysis of a failed kernel boot

� Other useful cases:

— Performance tweaking

— Boot timing analysis

— Boot sequencing analysis

— Boot and system debugging

� Shared logging provides you with another tool in the box
to use when you need it

www.mentor.com/embedded

Haven’t we seen this before?

� Yes!

� From git history, back in late 2002, Klaus Heydeck added
support for a shared memory buffer that could be passed
to the kernel to be used for shared logging.

� AFAICT, this feature was only supported in the Denx’s
kernels and not for all architectures. (PPC only?)

� Focus seems to have been primarily on being able to see
bootloader entries in the kernel

� Does not appear to have been widely used

� Unfortunately, the feature has suffered bit rot over time
and changes in the kernel logging structures broke it
(more on those changes later)

www.mentor.com/embedded

Kernel logging structures (then)

� For a considerable time prior to 3.4, the kernel log was a
byte-indexed array of characters

� Structure and implementation contained in printk.c

� Buffer space was declared as a static global inside printk.c

� Indices provided for logging start, logging end, and
console start locations in the buffer

� Simple implementation

� Fairly easy to support by the bootloader

www.mentor.com/embedded

Kernel logging structures (now)

� In May 2012, Kay Sievers’ patch changed the structure to
a variable length record with a fixed header

� Structure and implementation still contained in printk.c

� Buffer space still declared as a static global inside printk.c

� The header is 16 bytes and includes the timestamp in
binary form

� More complex. Has more pointers for tracking

— Sequence and index for: first, next, clear, & syslog

www.mentor.com/embedded

A few observations

� The shift to a record based structure in the kernel
introduced more pointers to manage for the handoff
between the bootloader and the kernel to occur correctly

� Global static declarations in the kernel makes the logging
structures available as soon as the C runtime is available
(important later)

� Using global statics structures complicates sharing the log
entries

www.mentor.com/embedded

Some goals for reviving this capability

� Available all the time

— Must have negligible impact on regular boots

� Portable across bootloaders

— uBoot would provide POC reference, but should be easy to port

� Support arbitrary location for logging buffer

— Allows the bootloader to specify an arbitrary location to the kernel

� Minimize ‘lost’ memory due to global static allocations

� Provide self-checking that ensured correct operation in the face
of incompatible entries seen by the bootloader of the kernel

� Provide as an ‘opt-in’ for both bootloader and kernel

� NOTE: the focus was on getting a bootloader to write a format
that the kernel understands, not to provide a new, general
mechanism for sharing

www.mentor.com/embedded

Interface design

� To address the number of parameters needed to be
passed into the kernel, I added a control block structure

� The control block encapsulates all of the necessary
logging information including structure size, various
indices, and buffer locations for sharing purposes

� Allows a single pointer location for the control block to
change where the log information is being written

� Allows the bootloader to pass a single parameter to the
kernel

� In theory, allows the kernel to adopt the CB and start
writing immediately to the next location in the buffer (
O(1) operation)

— In practice, there are wrinkles

www.mentor.com/embedded

How to pass the CB to the kernel?

� Fixed, well known location

— Used by the original shared log feature

— Works, but is very brittle

– Relies on a calculation of the end of RAM to align between the kernel
and the bootloader

– Doesn’t always work!

� Command line

— Initial approach used to revitalize the feature

— Very flexible and allows for dynamic setting by the user

— There’s a small performance hit that occurs during log coalescing

– This is O(n) based on the number of bootloader log entries and
kernel entries written when the coalescing occurs (more later)

— Personally, I greatly prefer this approach

— Acceptable upstream?

www.mentor.com/embedded

How to pass the CB to the kernel? (2)

� DeviceTree

— Second approach used to revitalize feature

— Fixed at DT compile time

— Again, there is a small performance hit that occurs during log
coalescing, albeit slightly reduced from before

– This is O(n) based on the number of bootloader log entries and
kernel entries written when the coalescing occurs (more later)

— Perhaps more acceptable upstream?

www.mentor.com/embedded

Bootloader implementation

� Tested with a Boundary Devices Sabre-Lite (i.MX6Q)

� Built against a 2014.7 boundary devices u-boot

� Existing log entry format in uBoot was very different from
that in the kernel

� However, uBoot already had the concept of a versioned
log format

� So, introduced a new log format (v3) to be compatible
with the kernel format

� Log version is controlled by an environment variable, so
user can dynamically ‘opt-in’, as desired, using standard
setenv commands

� The log CB and the log size are also controlled via
environment variables

www.mentor.com/embedded

Kernel implementation

� Based on the FSL vendor kernel, v3.10

� Relocated all the sequence and indices to a CB

� Added support for re-pointing the CB from a global static to one
passed in to the kernel

� Initially, used command line arguments to pass the necessary pointer
to the CB

� During command line processing, the values for the shared log are
parsed and captured for later use

� After mm_init(), the function setup_ext_logbuff() gets called, which
halts the logging temporarily and coalesces the entries together

— This can create a small time hit as the entries are copied from the previously
used buffer for the kernel into the bootloader provided buffer

— This is O(n) because it depends on the number of entries from the
bootloader and the number of entries from the kernel when this is run

— Luckily, neither is very large, but it would be nice to do away with that hit
entirely

www.mentor.com/embedded

Kernel implementation (2)

� Switching to using the DT worked, but didn’t help very
much

� By default, DT processing still occurs after logging events
have already started to be delivered into the kernel log

� Same need to coalesce entries together occurs

� The DT processing did occur earlier, so, it meant fewer
entries to coalesce

— Still not where we want to be

� Accessing the raw DT data earlier in init was possible, but
I did not get the buffer mapped into memory properly
before having to put this work aside for other priorities

— �

— In theory, should be workable, but needs to be proven out

www.mentor.com/embedded

Some gotchas

� Physical vs virtual addressing

— Bootloader uses physical

— Kernel uses both, depending on where you are in the code

— Making sure the right addresses are used is critical

� Mapped memory vs unmapped memory

— Kernel memory gets mapped in stages

— Make sure that the memory you are attempting to address is
mapped in before you use it

www.mentor.com/embedded

SOURCE CODE

www.mentor.com/embedded

DEMO

www.mentor.com/embedded

Current Status

� This works internally against the older kernel and uBoot

� Unfortunately, I have had to work on other tasks for the
last few months instead of this feature

� So, these changes haven’t been cleaned up or ported
forward for upstream submission, yet.

� Also, I still want to remove the small hit caused by the
coalescing process

— Need to initialize the buffer early enough to make coalescing un-
necessary

� I plan to tackle these issues when I return home and
expect I will have something submitted upstream soon

— In the interest of getting this out there, I am leaning towards
submitting the command line version as a working POC and
follow up with improvements later

www.mentor.com/embedded

Q&A DISCUSSION

