=

2.4\

4

red Logging with the
e Linux Kernel

menitor

embedded

mentor.com/embedded

Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Qt is a registered trade mark of Digia Plc and/or its subsidiaries. All other trademarks mentioned in this document are trademarks of their respective owners.

Outline

What and why of shared logging?

Hey! Haven't I seen this before?

Kernel logging structures, then and now
Design and Implementation

Live Demo

Current status

Q&A / Discussion

Men
Gmshg www.mentor.com/embedded embedded

What is shared logging?

It's really already in the name, but I'll spell it out below
— (no, not #exactsteps ©)

Simply put, the bootloader and the kernel can read and
write log entries for themselves normally

and read log entries from the other

For the bootloader, this implies that log entries persist
past reboots. For now, I have focused on shared volatile
RAM, but this could work for NV storage of logs as well.

Men
Gmshg www.mentor.com/embedded embedded

Why would we want shared logging?

Imagine debugging without logging.
~ ©
Most common use case:

— Post-mortem analysis of a failed bootloader boot
— Post-mortem analysis of a failed kernel boot

Other useful cases:
— Performance tweaking
— Boot timing analysis
— Boot sequencing analysis
— Boot and system debugging

Shared logging provides you with another tool in the box
to use when you need it

Men
GmShg www.mentor.com/embedded embedded

Haven’'t we seen this before?

Yes!

From git history, back in late 2002, Klaus Heydeck added
support for a shared memory buffer that could be passed
to the kernel to be used for shared logging.

AFAICT, this feature was only supported in the Denx’s
kernels and not for all architectures. (PPC only?)

Focus seems to have been primarily on being able to see
bootloader entries in the kernel

Does not appear to have been widely used

Unfortunately, the feature has suffered bit rot over time
and changes in the kernel logging structures broke it
(more on those changes later)

Men
GmShg www.mentor.com/embedded embedded

Kernel logging structures (then)

For a considerable time prior to 3.4, the kernel log was a
byte-indexed array of characters

Structure and implementation contained in printk.c
Buffer space was declared as a static global inside printk.c

Indices provided for logging start, logging end, and
console start locations in the buffer

Simple implementation
Fairly easy to support by the bootloader

Men
GmShg www.mentor.com/embedded embedded

Kernel logging structures (now)

In May 2012, Kay Sievers’ patch changed the structure to
a variable length record with a fixed header

Structure and implementation still contained in printk.c
Buffer space still declared as a static global inside printk.c

The header is 16 bytes and includes the timestamp in
binary form

More complex. Has more pointers for tracking
— Sequence and index for: first, next, clear, & syslog

Men
GmShg www.mentor.com/embedded embedded

A few observations

The shift to a record based structure in the kernel
introduced more pointers to manage for the handoff
between the bootloader and the kernel to occur correctly

Global static declarations in the kernel makes the logging
structures available as soon as the C runtime is available

(important later)

Using global statics structures complicates sharing the log
entries

Men
Gmshg www.mentor.com/embedded embedded

Some goals for reviving this capability

Available all the time
— Must have negligible impact on regular boots

Portable across bootloaders
— uBoot would provide POC reference, but should be easy to port

Support arbitrary location for logging buffer
— Allows the bootloader to specify an arbitrary location to the kernel

Minimize ‘lost’ memory due to global static allocations

Provide self-checking that ensured correct operation in the face
of incompatible entries seen by the bootloader of the kernel

Provide as an ‘opt-in’ for both bootloader and kernel

NOTE: the focus was on getting a bootloader to write a format
that the kernel understands, not to provide a new, general
mechanism for sharing

Men
GmShg www.mentor.com/embedded embedded

Interface design

To address the number of parameters needed to be
passed into the kernel, I added a control block structure

The control block encapsulates all of the necessary
logging information including structure size, various
indices, and buffer locations for sharing purposes

Allows a single pointer location for the control block to
change where the log information is being written

Allows the bootloader to pass a single parameter to the
kernel

In theory, allows the kernel to adopt the CB and start
writing immediately to the next location in the buffer (
O(1) operation)

— In practice, there are wrinkles

Men
Gmshg www.mentor.com/embedded embedded

How to pass the CB to the kernel?

Fixed, well known location
— Used by the original shared log feature

— Works, but is very brittle

- Relies on a calculation of the end of RAM to align between the kernel
and the bootloader

- Doesn't always work!
Command line
— Initial approach used to revitalize the feature

— Very flexible and allows for dynamic setting by the user

— There’s a small performance hit that occurs during log coalescing

- This is O(n) based on the number of bootloader log entries and
kernel entries written when the coalescing occurs (more later)

— Personally, I greatly prefer this approach
— Acceptable upstream?

MSR
Gm g www.mentor.com/embedded embedded

How to pass the CB to the kernel? (2)

DeviceTree
— Second approach used to revitalize feature
— Fixed at DT compile time

— Again, there is a small performance hit that occurs during log
coalescing, albeit slightly reduced from before

- This is O(n) based on the number of bootloader log entries and
kernel entries written when the coalescing occurs (more later)

— Perhaps more acceptable upstream?

Men
Gmshg www.mentor.com/embedded embedded

Bootloader implementation

Tested with a Boundary Devices Sabre-Lite (i.MX6Q)
Built against a 2014.7 boundary devices u-boot

Existing log entry format in uBoot was very different from
that in the kernel

However, uBoot already had the concept of a versioned
log format

So, introduced a new log format (v3) to be compatible
with the kernel format

Log version is controlled by an environment variable, so
user can dynamically ‘opt-in’, as desired, using standard
setenv commands

The log CB and the log size are also controlled via
environment variables

Men
GmShg www.mentor.com/embedded embedded

Kernel implementation

Based on the FSL vendor kernel, v3.10
Relocated all the sequence and indices to a CB

Added support for re-pointing the CB from a global static to one
passed in to the kernel

Initially, used command line arguments to pass the necessary pointer
to the CB

During command line processing, the values for the shared log are
parsed and captured for later use

After mm_init(), the function setup_ext_logbuff() gets called, which
halts the logging temporarily and coalesces the entries together

— This can create a small time hit as the entries are copied from the previously
used buffer for the kernel into the bootloader provided buffer

— This is O(n) because it depends on the number of entries from the
bootloader and the number of entries from the kernel when this is run

— Luckily, neither is very large, but it would be nice to do away with that hit
entirely

Men
Gmshg www.mentor.com/embedded embedded

Kernel implementation (2)

Switching to using the DT worked, but didn’t help very
much

By default, DT processing still occurs after logging events
have already started to be delivered into the kernel log

Same need to coalesce entries together occurs

The DT processing did occur earlier, so, it meant fewer
entries to coalesce

— Still not where we want to be

Accessing the raw DT data earlier in init was possible, but
I did not get the buffer mapped into memory properly
before having to put this work aside for other priorities

- ®
— In theory, should be workable, but needs to be proven out

Men
GmShg www.mentor.com/embedded embedded

Some gotchas

Physical vs virtual addressing

— Bootloader uses physical

— Kernel uses both, depending on where you are in the code
— Making sure the right addresses are used is critical

Mapped memory vs unmapped memory
— Kernel memory gets mapped in stages

— Make sure that the memory you are attempting to address is
mapped in before you use it

Men
GmShg www.mentor.com/embedded embedded

SOURCE CODE

GMSR% www.mentor.com/embedded g;]j%l_{]j‘(_jgg]

DEMO

M menior
Gmsn%: www.mentor.com/embedded embedoad

Current Status

This works internally against the older kernel and uBoot

Unfortunately, I have had to work on other tasks for the
last few months instead of this feature

So, these changes haven't been cleaned up or ported
forward for upstream submission, yet.

Also, I still want to remove the small hit caused by the
coalescing process

— Need to initialize the buffer early enough to make coalescing un-
necessary

I plan to tackle these issues when I return home and
expect I will have something submitted upstream soon
— In the interest of getting this out there, I am leaning towards

submitting the command line version as a working POC and
follow up with improvements later

Men
Gmshg www.mentor.com/embedded embedded

Q&A DISCUSSION

Men
GmShg www.mentor.com/embedded embedded

