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License

These slides are available under a Creative Commons Attribution-ShareAlike 3.0
license. You can read the full text of the license here
http://creativecommons.org/licenses/by-sa/3.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one (i.e. include this
page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of
this work

The orginals are at http://2net.co.uk/slides/
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About Chris Simmonds

• Consultant and trainer
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and

workshops

"Looking after the Inner Penguin" blog at http://2net.co.uk/

https://uk.linkedin.com/in/chrisdsimmonds/

https://google.com/+chrissimmonds
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Overview

• The Android graphics stack changed a lot in Jelly
Bean as a result of project Butter

• This presentation describes the current (JB) graphics
stack from top to bottom

• Main topics covered

• The application layer

• SurfaceFlinger, interfaces and buffer queues

• The hardware modules HWComposer and Gralloc

• OpenGL ES and EGL
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Inception of a pixel

• Everything begins when an activity draws to a surface

• 2D applications can use

• drawing functions in Canvas to write to a Bitmap:
android.graphics.Canvas.drawRect(), drawText(), etc

• descendants of the View class to draw objects such
as buttons and lists

• a custom View class to implement your own
appearance and behaviour

• In all cases the drawing is rendered to a Surface
which contains a GraphicBuffer
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2D rendering path
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Skia and hwui

• For 2D drawing there are two rendering paths

• hwui: (libwhui.so) hardware accelerated using
OpenGL ES 2.0

• skia: (libskia.so) software render engine

• hwui is the default

• Hardware rendering can be disabled per view,
window, activity, application or for the whole device

• Maybe for comparability reasons: hwui produces
results different to skia in some (rare) cases

The Android graphics path 8 Copyright ©2011-2014, 2net Limited



3D rendering path

• An activity can instead create a GLSurfaceView and
use OpenGL ES bindings for Java (the
android.opengl.* classes)

• Using either the vendor GPU driver (which must
support OpenGL ES 2.0 and optinally 3.0)

• Or as a fall-back, using PixelFlinger, a software GPU
that implements OpenGL ES 1.0 only

• Once again, the drawing is rendered to a Surface
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3D rendering path
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SurfaceFlinger
frameworks/native/services/surfaceflinger

• A high-priority native (C++) daemon, started by init
with UID=system

• Services connections from activities via Binder
interface ISurfaceComposer

• Receives activity status from Activity Manager

• Receives window status (visibility, Z-order) from
Window Manager

• Composits multiple Surfaces into a single image

• Passes image to one or more displays

• Manages buffer allocation, synchronisation
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SurfaceFlinger binder interfaces

SurfaceFlinger

Client

ISurfaceComposer ISurfaceComposerClient IDisplayEventConnection

e.g. activity

createConnection()
createDisplayEventConnection()

createSurface()
destroySurface()

getDataChannel()

The Android graphics path 13 Copyright ©2011-2014, 2net Limited



ISurfaceComposer

• ISurfaceComposer

• Clients use this interface to set up a connection with
SurfaceFlinger

• Client begins by calling createConnection() which
spawns an ISurfaceComposerClient

• Client calls createGraphicBufferAlloc() to create an
instance of IGraphicBufferAlloc (discussed later)

• Client calls createDisplayEventConnection() to create
an instance of IDisplayEventConnection

• Other methods include captureScreen() and
setTransactionState()
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ISurfaceComposerClient

• ISurfaceComposerClient

• This interface has two methods:

• createSurface() asks SufraceFlinger to create a new
Surface

• destroySurface() destroys a Surface
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IDisplayEventConnection

• IDisplayEventConnection

• This interface passes vsync event information from
SurfaceFlinger to the client

• setVsyncRate() sets the vsync event delivery rate:
value of 1 returns all events, 0 returns none

• requestNextVsync() schedules the next vsync event:
has no effect if the vsync rate is non zero

• getDataChannel() returns a BitTube which can be
used to receive events
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BufferQueue
frameworks/native/include/gui/BufferQueue.h

• Mechanism for passing GraphicBuffers to
SurfaceFlinger

• Contains an array of between 2 and 32
GraphicBuffers

• Uses interface IGraphicBufferAlloc to allocate buffers
(see later)

• Provides two Binder interfaces

• IGraphicBufferProducer for the client (Activity)

• IGraphicBufferConsumer for the consumer
(SurfaceFlinger)

• Buffers cycle between producer and consumer
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BufferQueue state diagram

FREE
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DEQUEUEDACQUIRED

IGraphicBufferProducer::
dequeueBuffer()

IGraphicBufferConsumer::
releaseBuffer()

IGraphicBufferProducer::
queueBuffer()

IGraphicBufferConsumer::
acquireBuffer()

IGraphicBufferProducer::
cancelBuffer()
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BufferQueue

• Default number of buffer slots since JB is 3
(previously 2)

• In JB you can compile Layer.cpp with
TARGET_DISABLE_TRIPLE_BUFFERING to return to 2 slots

• Call setBufferCount() to change the number of slots

• BufferQueue operates in two modes:

• Synchronous: client blocks until there is a free slot

• Asynchronous: queueBuffer() discards any existing
buffers in QUEUED state so the queue only holds the
most recent frame

The Android graphics path 19 Copyright ©2011-2014, 2net Limited



GraphicBuffer

frameworks/native/include/ui/GraphicBuffer.h

• Represents a buffer, wraps ANativeWindowBuffer

• Attributes including width, height, format, usage
inherited from ANativeWindowBuffer
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Composition

• On a vsync event, SurfaceFlinger calls
handleMessageRefresh() which goes through a
composition cycle:

• preComposition(): sort layers by Z order and call
onPreComposition() for each

• doComposition(): loop through displays: if there is a
dirty region, mark it to be drawn then call
postFameBuffer() to do the drawing

• postComposition(): loop through layers in Z order and
call onPostComposition()
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Layer
frameworks/native/services/surfaceflinger/Layer.h

• Each Layer has

• Z order

• Alpha value from 0 to 255

• visibleRegion

• crop region

• transformation: rotate 0, 90, 180, 270: flip H, V: scale

• SurfaceFlinger composits the layers using

• HWComposer, if it supports the operation

• Fall back to the GPU, via OpenGL ES (version 1.0
only, for historical reasons)
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HWComposer
hardware/libhardware/include/hardware/hwcomposer.h

• HWComposer is a vendor-supplied library, at run-time
in /system/lib/hw/hwcomposer.[product name].so

• Optional: in all cases there are fall-backs if HWC is
absent

• HWC does several different things

• sync framework (vsync callback)

• modesetting, display hotplug (e.g. hdmi)

• compositing layers together using features of the
display controller

• displaying frames on the screen
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prepare() and set()

• SurfaceFlinger calls HWComposer in two stages

• prepare()

• Passes a list of layers

• For each layer, HWComposer returns

• HWC_FRAMEBUFFER: SurfaceFlinger should write this
layer (using OpenGL)

• HWC_OVERLAY: will be composed by HWComposer

• set()

• Passes the list of layers for HWComposer to handle

• set() is used in place of eglSwapBuffers()
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vsync

• Since JB 4.1 SurfaceFlinger is synchronised to a
60Hz (16.7ms period) vsync event

• If HWComposer present, it is responsible for vsync

• Usually using an interrupt from the display: if no h/w
trigger, fake in software

• vsync() is a callback registered with HWComposer

• Each callback includes a display identifier and a
timestamp (in ns)

• If no HWComposer, SurfaceFlinger uses 16ms
timeout in s/w
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Displays

• HWComposer defines three display types
HWC_DISPLAY_PRIMARY e.g. built-in LCD screen

HWC_DISPLAY_EXTERNAL e.g. HDMI, WiDi

HWC_DISPLAY_VIRTUAL not a real display

• For each display there is an instance of
DisplayDevice in SurfaceFlinger
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IGraphicBufferAlloc and friends
frameworks/native/include/gui/IGraphicBufferAlloc.h

• Binder interface used by SurfaceFlinger to allocate
buffers

• Has one function createGraphicBuffer

• Implemented by class GraphicBufferAllocator, which
wraps the ANativeWindowBuffer class

• Uses Gralloc.alloc to the the actual allocation

• Underlying buffer is referenced by a buffer_handle_t
which is a file descriptor (returned by gralloc alloc)

• Binder can pass open file descriptors from process to
process

• Access buffer data using mmap
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Buffer usage and pixel format

frameworks/native/include/ui/GraphicBuffer.h

USAGE_HW_TEXTURE OpenGL ES texture

USAGE_HW_RENDER OpenGL ES render target

USAGE_HW_2D 2D hardware blitter

USAGE_HW_COMPOSER used by the HWComposer HAL

USAGE_HW_VIDEO_ENCODER HW video encoder

frameworks/native/include/ui/PixelFormat.h

PIXEL_FORMAT_RGBA_8888 4x8-bit RGBA

PIXEL_FORMAT_RGBX_8888 4x8-bit RGB0

PIXEL_FORMAT_RGB_888 3x8-bit RGB

PIXEL_FORMAT_RGB_565 16-bit RGB

PIXEL_FORMAT_BGRA_8888 4x8-bit BGRA
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Gralloc

hardware/libhardware/include/hardware/gralloc.h

• Gralloc is a vendor-supplied library, at run-time in
/system/lib/hw/gralloc.[product name].so

• Does two things

• gralloc alloc: allocates graphic buffers

• gralloc framebuffer: interface to Linux framebuffer
device, e.g. /dev/graphics/fb0

• gralloc alloc allocates all graphic buffers using a
kernel memory manager, typically ION

• Selects appropriate ION heap based on the buffer
usage flags
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OpenGL ES

• The Khronos OpenGL ES and EGL APIs are
implemented in these libraries

• /system/lib/libEGL.so

• /system/lib/libGLESv1_CM.so

• /system/lib/libGLESv2.so

• /system/lib/libGLESv3.so (optional from JB 4.3
onwards: actually a symlink to libGLESv2.so)

• In most cases they simply call down to the
vendor-supplied libraries in /system/lib/egl
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EGL
• EGL is the Khronos Native Platform Graphics

Interface

• Rendering operations are executed in an EGLContext

• In most cases the EGLContext is based on the
default display

• The mapping from the EGL generic display type is
done in
frameworks/native/opengl/include/EGL/eglplatform.h

typedef struct ANativeWindow* EGLNativeWindowType;

• EGLNativeWindowType is defined in
system/core/include/system/window.h
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OpenGL vendor implementation

• The vendor OpenGL libraries form the interface to the
GPU

• Responsible for

• creating display lists

• scheduling work for the GPU

• managing buffer synchronisation (typically using
fences, see background at the end)

• Usually there is a kernel driver which handles low
level memory management, DMA and interrupts

• The kernel interface is usually a group of ioctl
functions
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• Questions?
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Background: fences
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Buffer synchronisation

• There are many producers and consumers of
graphics buffers

• Pre JB sync was implicit: buffer not released until
operation complete

• Did not encourage parallel processing

• JB introduced explicit sync: each buffer has a sync
object called a fence

• Means a buffer can be passed to the next user before
operations complete

• The next user waits on the fence before accessing
the buffer contents

The Android graphics path 35 Copyright ©2011-2014, 2net Limited



Synchronisation using fences

• Represented by file handles: can be passed between
applications in binder messages

• Can also be passed from applications to drivers

• Each device driver (display, camera, video codec...)
has its own timeline

• A fence may have synchronisation points on multiple
timelines

• Allows buffers to be passed between multiple devices
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Timeline and sync point

• Timeline

• Per-device (display, GPU, camera, ...)

• Monotonically increasing 32-bit value

• Incremented after each event (essentially it is a count
of the jobs processed by the device)

• Sync point

• A point on a timeline

• Becomes signalled when the timeline passes it
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Fence

• Fence

• A collection of one or more sync points, possibly from
different timelines

• Represented by a file descriptor so an application can
wait using poll()

• Two fences can be merged to create a new fence that
depends on all the sync points of the original pair
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Fence: example

FB
timeline

GPU
timeline

Sync pt

Sync pt

Sync
Fence
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Background: ION
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Memory constraints

• Often necessary for a buffer to be accessed by
hardware

• Example: graphics buffer and display controller or
GPU

• Hardware may constrain memory access

• Example: hardware without IOMMU usually needs
physically contiguous memory

• To avoid copying, the memory must be allocated for
the most constrained device
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ION

• Previous memory allocators include pmem
(Qualcomm), cmem (TI), and nvmap (NVIDA)

• ION provides a unified interface for these needs

• Different allocation constraints

• Different caching requirements

• But the programmer still has to make the right choices
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Types of heap

• ION_HEAP_TYPE_SYSTEM

• memory allocated via vmalloc

• ION_HEAP_TYPE_SYSTEM_CONTIG

• memory allocated via kmalloc

• ION_HEAP_TYPE_CARVEOUT

• memory allocated from a pre reserved carveout heap

• allocations are physically contiguous
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Heap flags

• ION_FLAG_CACHED

• mappings of this buffer should be cached, ION will do
cache maintenance when the buffer is mapped for
DMA

• ION_FLAG_CACHED_NEEDS_SYNC

• Cache must be managed manually, e.g. using
ION_IOC_SYNC
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