
The Android graphics path
in depth

The Android graphics path 1 Copyright ©2011-2014, 2net Limited



License

These slides are available under a Creative Commons Attribution-ShareAlike 3.0
license. You can read the full text of the license here
http://creativecommons.org/licenses/by-sa/3.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one (i.e. include this
page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of
this work

The orginals are at http://2net.co.uk/slides/
The Android graphics path 2 Copyright ©2011-2014, 2net Limited

http://creativecommons.org/licenses/by-sa/3.0/legalcode


About Chris Simmonds

• Consultant and trainer
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and

workshops

"Looking after the Inner Penguin" blog at http://2net.co.uk/

https://uk.linkedin.com/in/chrisdsimmonds/

https://google.com/+chrissimmonds

The Android graphics path 3 Copyright ©2011-2014, 2net Limited

http://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/
https://google.com/+chrissimmonds


Overview

• The Android graphics stack changed a lot in Jelly
Bean as a result of project Butter

• This presentation describes the current (JB) graphics
stack from top to bottom

• Main topics covered

• The application layer

• SurfaceFlinger, interfaces and buffer queues

• The hardware modules HWComposer and Gralloc

• OpenGL ES and EGL

The Android graphics path 4 Copyright ©2011-2014, 2net Limited



The big picture

SurfaceFlinger

Activity

OpenGL vendor
libraries

OpenGL ES

GPU driver

HWComposer

ION

Gralloc alloc

FB driver

Gralloc FB

Android
framework

Vendor HAL
library

Kernel
driver

Activity

Activity
Manager

Window
Manager

BufferQueue

The Android graphics path 5 Copyright ©2011-2014, 2net Limited



Inception of a pixel

• Everything begins when an activity draws to a surface

• 2D applications can use

• drawing functions in Canvas to write to a Bitmap:
android.graphics.Canvas.drawRect(), drawText(), etc

• descendants of the View class to draw objects such
as buttons and lists

• a custom View class to implement your own
appearance and behaviour

• In all cases the drawing is rendered to a Surface
which contains a GraphicBuffer

The Android graphics path 6 Copyright ©2011-2014, 2net Limited



2D rendering path

Activity

Canvas

Surface

SkiaOpenGL ES

Vendor Open GL

GPU driver

Activity

HWUI

The Android graphics path 7 Copyright ©2011-2014, 2net Limited



Skia and hwui

• For 2D drawing there are two rendering paths

• hwui: (libwhui.so) hardware accelerated using
OpenGL ES 2.0

• skia: (libskia.so) software render engine

• hwui is the default

• Hardware rendering can be disabled per view,
window, activity, application or for the whole device

• Maybe for comparability reasons: hwui produces
results different to skia in some (rare) cases

The Android graphics path 8 Copyright ©2011-2014, 2net Limited



3D rendering path

• An activity can instead create a GLSurfaceView and
use OpenGL ES bindings for Java (the
android.opengl.* classes)

• Using either the vendor GPU driver (which must
support OpenGL ES 2.0 and optinally 3.0)

• Or as a fall-back, using PixelFlinger, a software GPU
that implements OpenGL ES 1.0 only

• Once again, the drawing is rendered to a Surface

The Android graphics path 9 Copyright ©2011-2014, 2net Limited



3D rendering path

Activity

Surface

OpenGL ES

Vendor Open GL

GPU driver

Activity

Android GL

PixelFlinger

The Android graphics path 10 Copyright ©2011-2014, 2net Limited



Composition

SurfaceFlinger

Wallpaper

Launcher

Navigation
bar

Status
bar

The Android graphics path 11 Copyright ©2011-2014, 2net Limited



SurfaceFlinger
frameworks/native/services/surfaceflinger

• A high-priority native (C++) daemon, started by init
with UID=system

• Services connections from activities via Binder
interface ISurfaceComposer

• Receives activity status from Activity Manager

• Receives window status (visibility, Z-order) from
Window Manager

• Composits multiple Surfaces into a single image

• Passes image to one or more displays

• Manages buffer allocation, synchronisation

The Android graphics path 12 Copyright ©2011-2014, 2net Limited



SurfaceFlinger binder interfaces

SurfaceFlinger

Client

ISurfaceComposer ISurfaceComposerClient IDisplayEventConnection

e.g. activity

createConnection()
createDisplayEventConnection()

createSurface()
destroySurface()

getDataChannel()

The Android graphics path 13 Copyright ©2011-2014, 2net Limited



ISurfaceComposer

• ISurfaceComposer

• Clients use this interface to set up a connection with
SurfaceFlinger

• Client begins by calling createConnection() which
spawns an ISurfaceComposerClient

• Client calls createGraphicBufferAlloc() to create an
instance of IGraphicBufferAlloc (discussed later)

• Client calls createDisplayEventConnection() to create
an instance of IDisplayEventConnection

• Other methods include captureScreen() and
setTransactionState()

The Android graphics path 14 Copyright ©2011-2014, 2net Limited



ISurfaceComposerClient

• ISurfaceComposerClient

• This interface has two methods:

• createSurface() asks SufraceFlinger to create a new
Surface

• destroySurface() destroys a Surface

The Android graphics path 15 Copyright ©2011-2014, 2net Limited



IDisplayEventConnection

• IDisplayEventConnection

• This interface passes vsync event information from
SurfaceFlinger to the client

• setVsyncRate() sets the vsync event delivery rate:
value of 1 returns all events, 0 returns none

• requestNextVsync() schedules the next vsync event:
has no effect if the vsync rate is non zero

• getDataChannel() returns a BitTube which can be
used to receive events

The Android graphics path 16 Copyright ©2011-2014, 2net Limited



BufferQueue
frameworks/native/include/gui/BufferQueue.h

• Mechanism for passing GraphicBuffers to
SurfaceFlinger

• Contains an array of between 2 and 32
GraphicBuffers

• Uses interface IGraphicBufferAlloc to allocate buffers
(see later)

• Provides two Binder interfaces

• IGraphicBufferProducer for the client (Activity)

• IGraphicBufferConsumer for the consumer
(SurfaceFlinger)

• Buffers cycle between producer and consumer

The Android graphics path 17 Copyright ©2011-2014, 2net Limited



BufferQueue state diagram

FREE

QUEUED

DEQUEUEDACQUIRED

IGraphicBufferProducer::
dequeueBuffer()

IGraphicBufferConsumer::
releaseBuffer()

IGraphicBufferProducer::
queueBuffer()

IGraphicBufferConsumer::
acquireBuffer()

IGraphicBufferProducer::
cancelBuffer()

The Android graphics path 18 Copyright ©2011-2014, 2net Limited



BufferQueue

• Default number of buffer slots since JB is 3
(previously 2)

• In JB you can compile Layer.cpp with
TARGET_DISABLE_TRIPLE_BUFFERING to return to 2 slots

• Call setBufferCount() to change the number of slots

• BufferQueue operates in two modes:

• Synchronous: client blocks until there is a free slot

• Asynchronous: queueBuffer() discards any existing
buffers in QUEUED state so the queue only holds the
most recent frame

The Android graphics path 19 Copyright ©2011-2014, 2net Limited



GraphicBuffer

frameworks/native/include/ui/GraphicBuffer.h

• Represents a buffer, wraps ANativeWindowBuffer

• Attributes including width, height, format, usage
inherited from ANativeWindowBuffer

The Android graphics path 20 Copyright ©2011-2014, 2net Limited



Composition

• On a vsync event, SurfaceFlinger calls
handleMessageRefresh() which goes through a
composition cycle:

• preComposition(): sort layers by Z order and call
onPreComposition() for each

• doComposition(): loop through displays: if there is a
dirty region, mark it to be drawn then call
postFameBuffer() to do the drawing

• postComposition(): loop through layers in Z order and
call onPostComposition()

The Android graphics path 21 Copyright ©2011-2014, 2net Limited



Layer
frameworks/native/services/surfaceflinger/Layer.h

• Each Layer has

• Z order

• Alpha value from 0 to 255

• visibleRegion

• crop region

• transformation: rotate 0, 90, 180, 270: flip H, V: scale

• SurfaceFlinger composits the layers using

• HWComposer, if it supports the operation

• Fall back to the GPU, via OpenGL ES (version 1.0
only, for historical reasons)

The Android graphics path 22 Copyright ©2011-2014, 2net Limited



HWComposer
hardware/libhardware/include/hardware/hwcomposer.h

• HWComposer is a vendor-supplied library, at run-time
in /system/lib/hw/hwcomposer.[product name].so

• Optional: in all cases there are fall-backs if HWC is
absent

• HWC does several different things

• sync framework (vsync callback)

• modesetting, display hotplug (e.g. hdmi)

• compositing layers together using features of the
display controller

• displaying frames on the screen

The Android graphics path 23 Copyright ©2011-2014, 2net Limited



prepare() and set()

• SurfaceFlinger calls HWComposer in two stages

• prepare()

• Passes a list of layers

• For each layer, HWComposer returns

• HWC_FRAMEBUFFER: SurfaceFlinger should write this
layer (using OpenGL)

• HWC_OVERLAY: will be composed by HWComposer

• set()

• Passes the list of layers for HWComposer to handle

• set() is used in place of eglSwapBuffers()

The Android graphics path 24 Copyright ©2011-2014, 2net Limited



vsync

• Since JB 4.1 SurfaceFlinger is synchronised to a
60Hz (16.7ms period) vsync event

• If HWComposer present, it is responsible for vsync

• Usually using an interrupt from the display: if no h/w
trigger, fake in software

• vsync() is a callback registered with HWComposer

• Each callback includes a display identifier and a
timestamp (in ns)

• If no HWComposer, SurfaceFlinger uses 16ms
timeout in s/w

The Android graphics path 25 Copyright ©2011-2014, 2net Limited



Displays

• HWComposer defines three display types
HWC_DISPLAY_PRIMARY e.g. built-in LCD screen

HWC_DISPLAY_EXTERNAL e.g. HDMI, WiDi

HWC_DISPLAY_VIRTUAL not a real display

• For each display there is an instance of
DisplayDevice in SurfaceFlinger

The Android graphics path 26 Copyright ©2011-2014, 2net Limited



IGraphicBufferAlloc and friends
frameworks/native/include/gui/IGraphicBufferAlloc.h

• Binder interface used by SurfaceFlinger to allocate
buffers

• Has one function createGraphicBuffer

• Implemented by class GraphicBufferAllocator, which
wraps the ANativeWindowBuffer class

• Uses Gralloc.alloc to the the actual allocation

• Underlying buffer is referenced by a buffer_handle_t
which is a file descriptor (returned by gralloc alloc)

• Binder can pass open file descriptors from process to
process

• Access buffer data using mmap
The Android graphics path 27 Copyright ©2011-2014, 2net Limited



Buffer usage and pixel format

frameworks/native/include/ui/GraphicBuffer.h

USAGE_HW_TEXTURE OpenGL ES texture

USAGE_HW_RENDER OpenGL ES render target

USAGE_HW_2D 2D hardware blitter

USAGE_HW_COMPOSER used by the HWComposer HAL

USAGE_HW_VIDEO_ENCODER HW video encoder

frameworks/native/include/ui/PixelFormat.h

PIXEL_FORMAT_RGBA_8888 4x8-bit RGBA

PIXEL_FORMAT_RGBX_8888 4x8-bit RGB0

PIXEL_FORMAT_RGB_888 3x8-bit RGB

PIXEL_FORMAT_RGB_565 16-bit RGB

PIXEL_FORMAT_BGRA_8888 4x8-bit BGRA

The Android graphics path 28 Copyright ©2011-2014, 2net Limited



Gralloc

hardware/libhardware/include/hardware/gralloc.h

• Gralloc is a vendor-supplied library, at run-time in
/system/lib/hw/gralloc.[product name].so

• Does two things

• gralloc alloc: allocates graphic buffers

• gralloc framebuffer: interface to Linux framebuffer
device, e.g. /dev/graphics/fb0

• gralloc alloc allocates all graphic buffers using a
kernel memory manager, typically ION

• Selects appropriate ION heap based on the buffer
usage flags

The Android graphics path 29 Copyright ©2011-2014, 2net Limited



OpenGL ES

• The Khronos OpenGL ES and EGL APIs are
implemented in these libraries

• /system/lib/libEGL.so

• /system/lib/libGLESv1_CM.so

• /system/lib/libGLESv2.so

• /system/lib/libGLESv3.so (optional from JB 4.3
onwards: actually a symlink to libGLESv2.so)

• In most cases they simply call down to the
vendor-supplied libraries in /system/lib/egl

The Android graphics path 30 Copyright ©2011-2014, 2net Limited



EGL
• EGL is the Khronos Native Platform Graphics

Interface

• Rendering operations are executed in an EGLContext

• In most cases the EGLContext is based on the
default display

• The mapping from the EGL generic display type is
done in
frameworks/native/opengl/include/EGL/eglplatform.h

typedef struct ANativeWindow* EGLNativeWindowType;

• EGLNativeWindowType is defined in
system/core/include/system/window.h

The Android graphics path 31 Copyright ©2011-2014, 2net Limited



OpenGL vendor implementation

• The vendor OpenGL libraries form the interface to the
GPU

• Responsible for

• creating display lists

• scheduling work for the GPU

• managing buffer synchronisation (typically using
fences, see background at the end)

• Usually there is a kernel driver which handles low
level memory management, DMA and interrupts

• The kernel interface is usually a group of ioctl
functions

The Android graphics path 32 Copyright ©2011-2014, 2net Limited



• Questions?

The Android graphics path 33 Copyright ©2011-2014, 2net Limited



Background: fences

The Android graphics path 34 Copyright ©2011-2014, 2net Limited



Buffer synchronisation

• There are many producers and consumers of
graphics buffers

• Pre JB sync was implicit: buffer not released until
operation complete

• Did not encourage parallel processing

• JB introduced explicit sync: each buffer has a sync
object called a fence

• Means a buffer can be passed to the next user before
operations complete

• The next user waits on the fence before accessing
the buffer contents

The Android graphics path 35 Copyright ©2011-2014, 2net Limited



Synchronisation using fences

• Represented by file handles: can be passed between
applications in binder messages

• Can also be passed from applications to drivers

• Each device driver (display, camera, video codec...)
has its own timeline

• A fence may have synchronisation points on multiple
timelines

• Allows buffers to be passed between multiple devices

The Android graphics path 36 Copyright ©2011-2014, 2net Limited



Timeline and sync point

• Timeline

• Per-device (display, GPU, camera, ...)

• Monotonically increasing 32-bit value

• Incremented after each event (essentially it is a count
of the jobs processed by the device)

• Sync point

• A point on a timeline

• Becomes signalled when the timeline passes it

The Android graphics path 37 Copyright ©2011-2014, 2net Limited



Fence

• Fence

• A collection of one or more sync points, possibly from
different timelines

• Represented by a file descriptor so an application can
wait using poll()

• Two fences can be merged to create a new fence that
depends on all the sync points of the original pair

The Android graphics path 38 Copyright ©2011-2014, 2net Limited



Fence: example

FB
timeline

GPU
timeline

Sync pt

Sync pt

Sync
Fence

The Android graphics path 39 Copyright ©2011-2014, 2net Limited



Background: ION

The Android graphics path 40 Copyright ©2011-2014, 2net Limited



Memory constraints

• Often necessary for a buffer to be accessed by
hardware

• Example: graphics buffer and display controller or
GPU

• Hardware may constrain memory access

• Example: hardware without IOMMU usually needs
physically contiguous memory

• To avoid copying, the memory must be allocated for
the most constrained device

The Android graphics path 41 Copyright ©2011-2014, 2net Limited



ION

• Previous memory allocators include pmem
(Qualcomm), cmem (TI), and nvmap (NVIDA)

• ION provides a unified interface for these needs

• Different allocation constraints

• Different caching requirements

• But the programmer still has to make the right choices

The Android graphics path 42 Copyright ©2011-2014, 2net Limited



Types of heap

• ION_HEAP_TYPE_SYSTEM

• memory allocated via vmalloc

• ION_HEAP_TYPE_SYSTEM_CONTIG

• memory allocated via kmalloc

• ION_HEAP_TYPE_CARVEOUT

• memory allocated from a pre reserved carveout heap

• allocations are physically contiguous

The Android graphics path 43 Copyright ©2011-2014, 2net Limited



Heap flags

• ION_FLAG_CACHED

• mappings of this buffer should be cached, ION will do
cache maintenance when the buffer is mapped for
DMA

• ION_FLAG_CACHED_NEEDS_SYNC

• Cache must be managed manually, e.g. using
ION_IOC_SYNC

The Android graphics path 44 Copyright ©2011-2014, 2net Limited


