HTTP-FUSE PS3 Linux: an internet boot framework with kboot

http://openlab.jp/oscirclar/

Kuniyasu Suzaki and Toshiki Yagi
National Institute of Advanced Industrial Science and Technology
Background

- PS3Linux makes us cell programming.

- Installing Linux to PS3 is painful
 - Installation time is too long!

- Then, how about Live-CD?
 - Yes, but they can never upgrade itself.
Network booting

- With network booting, it’s no need to install Linux to HDD.
- NFS boot is the most popular network booting method.
- But NFS service does not match to distribute worldwide.
About PS3 as Linux machine

- Processor: 1 PPE and 6 SPEs
 - PPE is 64-bit Power Architecture processor core
 - SPE is simple processor which optimized for compute-intensive workloads.
- Memory: 256MB
- 4MB Flash memory to boot loader
- Internal SATA 2.5inch HDD
Boot sequence of PS3 Linux

1. Initial bootloader
2. Kboot on internal Flash
3. Start mini Linux system
 - Initialize disks and network
 - Read kernel and miniroot from disk or network
 - Execute target kernel using kexec
4. Start target system
Internet booting using HTTP

- We developed Internet virtual block device “HTTP-FUSE LOOP”.
- Boot loader “kboot” can boot from kernel and miniroot on remote HTTP server.
- It requires DHCP to get kernel and miniroot from HTTP server.
Booting kernel via HTTP

- On kboot command prompt, you can download file on HTTP server, and boot from it.
- Example:

kboot: http://www.example.org/ps3/vmlinux
 initrd=http://www.example.org/ps3/initrd.img
 video=ps3fb:mode:5
After booting kernel

- kboot
- Initialize hardware
- Configure network
- Mount HTTP-FUSE LOOP as root filesystem
- Start init
- Linux
Data structure of HTTP-FUSE LOOP

- Original block device is split by a constant size (currently 256kB) and compressed by zlib.
- Each data is saved to a block file, its name is a SHA1 value of its contents.
 - If there are same contents, they are held together one block file and reduce total file space.
- Block files are managed by “index” file.
Block Device

- 4KB Page
- ext2
- ...
- ...
- ...
- ...

256KB

index and block files

- index.idx
- 4ad36ffe8...
- 974daf34a...
- 2d34ff3e1...
- 3310012a...
- ...

The block files are re-constructed as a virtual disk with HTTP-FUSE LOOP

- compressed by zlib
Mounting HTTP-FUSE LOOP

• When mounting HTTP-FUSE LOOP, it downloads an “index” file and makes virtual loopback file from the qe“index” information.

• HTTP-FUSE LOOP is virtual loopback file
 – Use “mount –o loop” or “losetup” command to mount HTTP-FUSE LOOP
Reading from HTTP-FUSE LOOP

• When reading request occurred to HTTP-FUSE LOOP, it gets relevant block file.
 – If block file is available on cache, HTTP-FUSE LOOP use it, otherwise, downloads it from HTTP server.
• HTTP-FUSE LOOP driver extracts block file, and maps it to satisfy the reading request.
Contents SEVER block files

Loopback
losetup /dev/loop0
/var/tmp/fuse/ps3debian

Loopback file
/var/tmp/fuse/ps3debian

Loopback driver

4KB Page
ext2

extract

FUSE driver

decompress

index.idx

block files
/tmp/blocks

4ad36ffe8…
974daf34a…
2d34ff3e1…
3310012a…
...
Updating virtual device(1)

- When upgrade occurs to original storage,
 - Block file newly created at modified location.
 - Old block file are used at unmodified location.
 - New “index” file created.
- Adding new block files and “index” file, updating virtual device is almost done.
 - When HTTP-FUSE LOOP driver restarted with new “index” file, updating is completely done.
Block Device

- 4KB Page
- ext2
- ...
- ...
- ...
- ...

256KB

block files named by SHA1

- index.idx
- 4ad36ffe8...
- 974daf34a...
- 2d34ff3e1...
- 3310012a...
- ...

Same files
Reusable for FUSE

Update
apt-get install ...

FUSE driver

(1)
Partial Update

Master PS3

Variable Update

New Block Files

New Index file

Index Files

Block Files

Cache files at local storage

HTTP Server

On demand download

Internet

Updated OS

Client

Client
HTTP-FUSE LOOP issue

- It is (currently) read-only.
- It uses temporary directory for cache.
- Its speed depends on network bandwidth and latency.
Read-only issue

• Normal distribution needs Read-write disk access.
 – If you have only read-only access, normal distribution falls to single-user mode.
• To solve read-only issue, we introduced device-mapper snapshot.
“Pivot-root” issue

- Normal distribution remounts HDD partition to root directory at init starts.
 - Root directory before init moved another directory or just deleted.
 - HTTP-FUSE LOOP uses temporary directory for cache, remounting causes trouble.
After HTTP-FUSE PS3 Linux boot

Root directory on ramdisk

 simlink to root directory

read-only HTTP-FUSE loop

bin/
dev/
etc/
lib/
sbin/
tmp/
usr/
var/
MOUNTPOINT/

read-write snapshot
Network bandwidth and latency

• Performance of HTTP-FUSE LOOP affected by bandwidth and latency.
 – We solved this problem with worldwide mirror sites.
World Wide Deployment of Server

- We utilize inexpensive Web Hosting Service.
 - 5GB/month from $10
DNS-Balance

DNS request
Resolve **select.inetboot.net** to shorten *latency*

- **Client**
- **Web server for HTTP-FUSE Xenoppix**
- **DNS server**: **ns.inetboot.net**
- **Block files**

XX.XXX.0.10

YYYY.0.10

RRADB (Routing ASSET DATABASE)

ASK the nearest server for **select.inetboot.net**
- **XX.XXX.0.10**
- **YYYY.0.10**
Current status

• It can boot PS3 Debian.
• It uses 32MB, 1/8 of total memory of PS3 as space for device-mapper snapshot.
• Amount of download is about 170MB
 – From boot to finish starting gnome
Future plan

- More distributions
 - Fedora core, gentoo and more
- Add Cell/SDK and some demos
 - For SPE Programming.
- Auto setup external swap device
Conclusion

• We made HTTP-FUSE PS3 Linux, which completely boot from remote HTTP server.
• The current target is Debian GNU/Linux.

• This work is a apart of OS-Circular.
 – http://openlab.jp/oscircular/