
Enhancements to USB Gadgets
Embedded Linux Conference 2008

Conrad Röber
April 16, 2008

April 16, 2008USB Gadget Enhancements
2

About the Author

Conrad Röber
I have a background in
Physic but have spent my
professional life working
with computers, mostly
embedded systems.
Domains were process
control and
telecommunications.

Special interest computing
architectures and operating
systems.

I’m working in NXP’s Business
Line Cellular Systems; the BL is
making reference designs –
silicon and software – for cellular
phones.

April 16, 2008USB Gadget Enhancements
3

The Topography

Linux driver land is
large

Somewhere, in a
place that did not
fit on the screen,
there is USB
county

Finally, there is a
small place called
Gadget village

April 16, 2008USB Gadget Enhancements
4

Desktop vs. Embedded

Unlike other buses, USB is
asymmetric – it distinguishes host
and device
Desktop computers act as USB host.
The Linux host implementation is
mature solution – after all, it is used
in millions of desktop systems

The Linux device side – named
Gadget – is less developed.

I am going to describe in the
following:

– What is there …
– What are the requirements and

where do they stem from …
– What is missing …
– How the gap can be filled

April 16, 2008USB Gadget Enhancements
5

Contents

Motivation

Background

Requirements
– Functional
– Non-functional

Solution

Conclusions

April 16, 2008USB Gadget Enhancements
6

Motivation

April 16, 2008USB Gadget Enhancements
7

Motivation

There are things that one can sensibly implement with USB (and which
are implemented in NXP’s non-Linux reference design), …

…but go beyond what the Linux USB Gadget allows.

April 16, 2008USB Gadget Enhancements
8

Motivation 1 / 2

Composite USB devices have
multiple functions accessible
through a single USB port

Example:
– Mobile phone, composed of a

wireless modem, a USB flash disk,
and a debug port

The USB gadget framework does
not support the aggregation of
several functions; only one function
at a time is accessible via USB.

Wireless
Modem

Flash Disk

Controller

Debug
Port

April 16, 2008USB Gadget Enhancements
9

Motivation 2 / 2

USB devices may have more than
one USB controller

Example:
– Mobile phone, having both wired

and wireless controllers

The USB gadget framework
supports only a single controller at
a time.

Wireless
Modem

Flash Disk

Wired Controller

Wireless Controller
Debug
Port

April 16, 2008USB Gadget Enhancements
10

Background

April 16, 2008USB Gadget Enhancements
11

Terminology 1 / 2

Gadget
Driver

Gadget

Gadget: USB device controller as
used in the Linux USB Gadget
framework

Sometimes used as “Linux system
with role of a USB device”

USB Device
Controller

Storage /
Network / …
Subsystem

Storage /
Network / …
Subsystem

Gadget driver: Implements the
functions of one or more USB
classes.
Equivalent to the term “class driver”.

Linux
kernel

April 16, 2008USB Gadget Enhancements
12

Terminology 2 / 2

Gadget
Driver

Gadget

USB Device
Controller

Storage /
Network / …
Subsystem

Storage /
Network / …
Subsystem

Linux
kernel

Interface: An interface is a logical
group of endpoints making a certain
functionality accessible over USB.

Endpoint: A uniquely addressable
portion of a USB device that is the
source or sink of information in a
communication flow between the host
and device.
Endpoints are realised in silicon as a
packet buffer connected to the serial
engine.
They are uniquely identified by their
number (0 ..15) and their direction (IN
or OUT)

Example: The Mass Storage
Class defines a single
interface consisting of one IN
and one OUT endpoint and
transporting SCSI commands.

April 16, 2008USB Gadget Enhancements
13

Descriptors 1/2

USB devices are self-describing:
– From the formal description alone,

a host can determine capabilities,
functions, protocols, etc.

– The USB standard defines a four-
level descriptor hierarchy

Device Descriptor
VID = 1234
PID = 5678
Number of configurations = n
…

Device Descriptor
VID = 1234
PID = 5678
Number of configurations = n
…

Configuration Descriptor
Supply current = x mA
Number of interfaces = n

Configuration Descriptor
Supply current = x mA
Number of interfaces = n

Configuration Descriptor
Supply current = x mA
Number of interfaces = n
…

Configuration Descriptor
Supply current = x mA
Number of interfaces = n
…

Interface Descriptor
Class = a
Subclass = b
Protocol = c
Number of endpoints = n

Interface Descriptor
Class = a
Subclass = b
Protocol = c
Number of endpoints = n

Interface Descriptor
Class = a
Subclass = b
Protocol = c
Number of endpoints = n

Interface Descriptor
Class = a
Subclass = b
Protocol = c
Number of endpoints = n

Interface Descriptor
Class = a
Subclass = b
Protocol = c
Number of endpoints = n

Interface Descriptor
Class = a
Subclass = b
Protocol = c
Number of endpoints = n

Endpoint Descriptor
Type = …
Direction = IN
Size = 512

Endpoint Descriptor
Type = …
Direction = IN
Size = 512

Endpoint Descriptor
Address = k
Direction = IN
Packet size = 512

Endpoint Descriptor
Address = k
Direction = IN
Packet size = 512

Example USB flash disk
– Wrapper to transport SCSI

commands over USB
– Class = Mass Storage
– Subclass = MMC-2 (SCSI dialect)
– Protocol = Bulk-Only Transport

April 16, 2008USB Gadget Enhancements
14

Descriptors 2 / 2

4-layer descriptor hierarchy cannot
adequately describe complex devices
like cellular handsets

Addressed by the introduction of
union and interface association
descriptors: they act as a bracket to
group logically related interfaces

Because of this ad-hoc extension, the
descriptors become difficult to
generate (by the device) and difficult
to parse (by the host).

Example:
– Telephone Control Model:

• Audio interface
• Associated AT command call

control interface

Device Descriptor
…
Device Descriptor
…

Configuration Descriptor
…
Configuration Descriptor
…

Union Descriptor
WHCM Logical Handset
Union Descriptor
WHCM Logical Handset

Endpoint
Descriptor
Endpoint
Descriptor

Interface
Descriptor
Interface
Descriptor

Union
Descriptor
Union
Descriptor

Union
Descriptor
Union
Descriptor

Interface
Descriptor
Interface
DescriptorInterface

Descriptor
Interface
Descriptor

Interface
Descriptor
Interface
DescriptorInterface

Descriptor
Interface
Descriptor

Endpoint
Descriptor
Endpoint
Descriptor

Endpoint
Descriptor
Endpoint
DescriptorEndpoint

Descriptor
Endpoint
Descriptor

Endpoint
Descriptor
Endpoint
DescriptorEndpoint

Descriptor
Endpoint
Descriptor

April 16, 2008USB Gadget Enhancements
15

Requirements

April 16, 2008USB Gadget Enhancements
16

Functional Gap 1 / 2

In a more formal way:
– Limitation is that

exactly one Gadget
Driver is bound to a
Gadget.

Desired functionality:
– n different Gadget

Drivers can be
bound to a given
Gadget

Gadget
Driver Gadget1 1

Gadget
Driver Gadget1 .. ∗ 1

This addresses the use case:
– Composite device: Example:

• Wireless modem plus USB flash disk
– Several instances of one Gadget driver. Example:

• Network connection to (public) Internet and to
(private) operator IP network for MMS or WAP

USB Device
Controller

USB Device
Controller

1 1

1 1

April 16, 2008USB Gadget Enhancements
17

Functional Gap 2 / 2

Second limitation:
– Exactly one Gadget

and one controller
may exist.

Desired functionality:
– n different Gadget

Drivers can be
bound to m different
Gadgets

Gadget
Driver Gadget1 1

Gadget
Driver Gadget1..∗

This addresses the use cases:
– Wireless USB: Device has 1 wireless and 1 wired

controller
– Other cases where more than one controller is

needed.

USB Device
Controller

USB Device
Controller

1 1

1 11..∗

April 16, 2008USB Gadget Enhancements
18

Customisation 1 / 2

A Gadget has customisable items:
– Numeric vendor and product IDs
– Strings like manufacturer and

product names

These items are currently hard-
coded in the Gadget drivers: Only
appropriate for single-function
devices, not for composite devices

Names should refer to the product as
a collection of functions, not to
individual functions

Found new hardware:
NXP Mobile System Solution 6515 …
Found new hardware:
NXP Mobile System Solution 6515 …

PID = 1234
VID = 5678
NXP Mobile …

PID = 1234
VID = 5678
NXP Mobile …

ModemModemModemModem

Flash diskFlash disk

Debug portDebug port

Component
list

Generic, no
need for
customisation

To be
customised

April 16, 2008USB Gadget Enhancements
19

Customisation 2 / 2

Separation of customisable
and generic kernel code is vital
for companies making
(embedded) Linux products.
(Desktop distros have other
means of customisation, e.g.
the GUI.)
If properly separated:

– Companies can follow
evolution of the “vanilla”
kernel without having to
merge their modifications in.

Only if interfaces change,
companies have to update
their customised code.
Interface changes are less
frequent than compatible
changes like bug fixes.

Vanilla
kernel

Product with
customised
kernel
Mix of generic and custom code:
Frequent merge of kernel changes even if the
product spec does not change.

Vanilla
kernel

Product-
specific
code
Separation of generic and custom code:
Less frequent merging; kernel and product
can have independent evolution.
• Less effort
• Less error-prone

April 16, 2008USB Gadget Enhancements
20

Solution

April 16, 2008USB Gadget Enhancements
21

Just to make sure …

What I’m presenting in the following slides is just in the concept phase
– there is no code yet

April 16, 2008USB Gadget Enhancements
22

Design Sketch

Introduce the following new
entities:

– A generic multiplexing layer
– A product-specific component

responsible for …
• … constructing the composite

device from its Gadget driver
constituents

• … branding

Boundary conditions:
– Keep interfaces as compatible

as possible to minimise
transition effort

– Keep multiplexing layer simple
so that single-function
Gadgets are still simple

ModemModem
Flash
disk
Flash
disk

Debug
port
Debug
port

ModemModem

Multiplexing
Layer
Multiplexing
Layer

PID = 1234
VID = 5678
NXP Mobile …

PID = 1234
VID = 5678
NXP Mobile …

2 x Modem
1 x Flash Disk
1 x Debug portControllerController

ControllerController
Generic, no
need for
customisation

Product specific,
has to be
customised

April 16, 2008USB Gadget Enhancements
23

Solution – Union Descriptors

Those descriptors that form “brackets”
around interfaces contain indices pointing
to the subordinate interfaces

Descriptors from a tree, with descriptors
as nodes and indices as arcs.

To build the final descriptor tree:
– Each Gadget driver defines a descriptor

“template”, with indices starting at 0. (Can
be used unchanged for single-function
device.)

– For each Gadget driver to be added, the
Gadget driver’s template is merged in and
an offset added to the indices

Note that the merge function needs to be
aware of the descriptor formats.

Union Descriptor
WHCM Logical Handset
0

Union Descriptor
WHCM Logical Handset
0

Endpoint
Descriptor
Endpoint
Descriptor

Interface
Descriptor
1

Interface
Descriptor
1

Union
Descriptor
#2

Union
Descriptor
#2

Union
Descriptor
#5

Union
Descriptor
#5

Interface
Descriptor
#3

Interface
Descriptor
#3

Interface
Descriptor
#4

Interface
Descriptor
#4

Interface
Descriptor
#6

Interface
Descriptor
#6

Interface
Descriptor
#7

Interface
Descriptor
#7

Endpoint
Descriptor
Endpoint
Descriptor

Endpoint
Descriptor
Endpoint
DescriptorEndpoint

Descriptor
Endpoint
Descriptor

Endpoint
Descriptor
Endpoint
DescriptorEndpoint

Descriptor
Endpoint
Descriptor

Descriptor tree (simplified, functional
descriptors etc. left out.)

April 16, 2008USB Gadget Enhancements
24

Solution – Configuration

Building the descriptors is in essence
constructing a tree.

The Gadget drivers should keep only the
descriptors that characterise the Gadget
driver as such: interface, endpoint, and
union descriptors.

These descriptors of a Gadget form a
subtree; this subtree is either at the root
directly blow the configuration descriptor
(the WHCM union descriptor in the
example), or is inserted further down in
the tree.

As graph operations are not a strong
point of the C language, a textual
representation interpreted at runtime
could be used. (Gadgets have names
anyway.)

ModemModem Flash
disk
Flash
disk

Debug
port
Debug
port

ModemModem

Multiplexing
Layer
Multiplexing
Layer

PID = 1234
VID = 5678
NXP Mobile …

PID = 1234
VID = 5678
NXP Mobile …

WHCM {
2 x Modem
1 x Flash Disk
1 x Debug port

}
ControllerController

ControllerController

<<bind>>

<<bind>>

<<bind>>

Wireless
Handset
Wireless
Handset

<<bind>>

April 16, 2008USB Gadget Enhancements
25

Solution – Endpoint Mapping

When the Gadget is initialised, the
endpoints available in the
controller and the endpoints
required by the class definitions
have to be matched.

Matching process is simple if
controller has a large enough set
of equivalent endpoints that can
be configured as needed

Sometimes complex:
– The controller silicon has a fixed

amount of RAM that can be
flexibly assigned to endpoints
(endpoints single/double
buffered, large or small buffer)

– Endpoints are not equivalent

ModemModemDebug portDebug port ModemModemFlash diskFlash disk

Endpoints required by class definitions

Endpoints provided by controller siliconIf the endpoint structure of the controller cannot
be sensibly formalised then let the programmer
supply a mapping function.

April 16, 2008USB Gadget Enhancements
26

Related Work

David Brownell is working on a Gadget
enhancement

His design is introducing a compound
gadget

A multi-function device is formed by
loading the compound Gadget driver,
followed by the remaining Gadget drivers.

The Gadget drivers are parameterised by
module parameters.

The requirements are more modest than
the ones presented above:

– Only a single instance of a Gadget driver
– Only one controller

Flash
disk
Flash
disk

Debug
port
Debug
portModemModem

CompoundCompound

ControllerController

insmod compound
insmod modem
insmod ‘flash disk’
insmod ‘Debug port’

insmod compound
insmod modem
insmod ‘flash disk’
insmod ‘Debug port’

<<load>>
<<load>>

<<load>>

April 16, 2008USB Gadget Enhancements
27

Conclusion

April 16, 2008USB Gadget Enhancements
28

Conclusions

USB gadgets are a viable solution for simple single-function devices

Multi-function devices – in particular the Wireless Mobile
Communication devices – need enhancements to the Gadget
framework

The same is true for Wireless USB

Ongoing work by D. Brownell addresses part of the functional gap

NXP will work with the community on improvements

April 16, 2008USB Gadget Enhancements
29

Your Feedback

Questions?

Are the enhancements relevant?

To which types of products?

Do you see further requirements or different
solutions?

Which other device classes do you expect to
see?

April 16, 2008USB Gadget Enhancements
30

	Enhancements to USB Gadgets�Embedded Linux Conference 2008
	About the Author
	The Topography
	Desktop vs. Embedded
	Contents
	Motivation�
	Motivation
	Motivation 1 / 2
	Motivation 2 / 2
	Background�
	Terminology 1 / 2
	Terminology 2 / 2
	Descriptors 1/2
	Descriptors 2 / 2
	Requirements�
	Functional Gap 1 / 2
	Functional Gap 2 / 2
	Customisation 1 / 2
	Customisation 2 / 2
	Solution�
	Just to make sure …
	Design Sketch
	Solution – Union Descriptors
	Solution – Configuration
	Solution – Endpoint Mapping
	Related Work
	Conclusion�
	Conclusions
	Your Feedback

