

GStreamer 1.0

No longer compromise
flexibility for performance

Edward Hervey
edward@collabora.com
ELC 2012

GStreamer
● Open Source Multimedia Framework
● Set of libraries and plugins
● Direct Acyclic Graphs of elements
● API for plugins (to export features)
● API for applications

GStreamer 0.10
● 0.10 series (0.10.0 Dec 5 2005)
● Used widely and continuously

improved
● More popular and solid than

anticipated

0.10 Limitations
● Performance issues
● Some use-case very cumbersome to

handle (hw-accel)
● Missing information
● Caps tightly coupled to buffer/memory
● Deprecated API

Enter GStreamer 1.0
● Talked about since 2007
● New challenges

 Embedded Platforms
 GPU
 Dynamic pipelines
 Re-negotation

Goals
● Improve performance
● Allow more use-cases
● Avoid vendor 'hacks'
● Minimize downstream patches

GStreamer 1.0
● API/ABI cleanups
● Memory Management
● (Re)Negotiation
● Dynamic Pipelines
● Open the road to better performance

● We'll stick to what's relevant to the
embedded community

Memory management
● 0.10

 One buffer => One 'data' field (pointer)
 Content entirely specified by caps
 No control over memory access

● Problems
 Different content layout => new caps
 More fields => Override data (or subclass)

● => Incompatibility/Maintenance Hell

Memory management
● 0.10 Examples

 Stride
● video/x-raw-yuv-strided,stride=4096,...
● Incompatible with all existing video elements :(

 Non-contiguous planes
● GstVendorBufferIncompatible
● Also need specific caps to avoid other elements

from prodding into (invalid/unknown) 'data' field
 <Insert the hack you had to do>

Memory management
● 1.0

 Memory separate from GstBuffer
 Caps separated from GstBuffer
 Generic Metadata system for GstBuffer

GstBuffer

GstBuffer

GstMemory

GstMeta

(Re)Negotiation
● 0.10

 Linked with buffer allocation (comes from
downstream)

● Problems
 Slow
 Doesn't work when upstream need to re-

negotiate

(Re)Negotiation
● In 1.0, negotiation is entirely

decoupled from buffer allocation
● GST_QUERY_ALLOCATION

Performance
● Re-use buffers
● Explicit concept of GstBufferPool

Impact of change
● Application porting minimal
● 'Naive' plugin porting minimal
● “Throw away the hacks”

 Re-use existing features

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

