VM-to-VM Communication
Mechanisms for Embedded

Stefano Stabellini

'Existing VM-to-VM Communication Mechanisms

> Existing protocols: Xen PV Drivers, VirtlO
>> discoverable and dynamic
>> create new connections at runtime
>> made for 10 virtualization

> A frontend in the guestconnectsto the
backend in DomOQO/ hypervisor

> Created to virtualizedevices
Frontend Backend

> Typically based on memory sharing DomU Dom0O
om om

> VirtlO expects privileged backends

Hardware

Static Partitioning

E /
i
Fa

'Static Partitioning

> Static Partitioning is similarto virtualization with some key differences:
>> No dynamic VMs, a limited number of "partitions" instead
>> Focus on direct assignment of hardware resources
>> Configuration defined at "Build Time"
>> Real-Time, Safety, and Short Boot Times are often key requirements

> Example: Xen DomOless

'Xen DomOless

U-Boot

..

L2

.
.
L2
L2
.
e

. .,

. ‘e

.
.
L2
.
.
L2
o
‘e
o

loads into memory : 3
v: k

Xen

‘e
4
o
.
.
o
L2
.
L2
o
.
.
.
L2
.
.
L2
L2
.
.
L2
L2
.
.
L2
o
.
L2
L2
.
.
L2
L
.
.
o
.
.
L2
£
.
.
o
.
.
L2
o
.
.
o
.
.
L
o
.
..
L2

'Xen DomOless

boots |

—

4 N

'Xen DomOless Current Status

> Static Partitions defined at build time
> Fast boottimes, real-time support, easier to safety-certify
> DomOis not required

> No "outof the box" communication mechanisms available

'Static Partitioning and Communication

> Often only VM-to-VM communicationis required, not device virtualization
>> There are enough physical devices to directly assign them to VMs as needed
>> Device virtualization can be interesting for sharing an SD card among multiple VMs

> VM-to-VM communicationis differentfrom device virtualization
> A simple VM-to-VM channel to send and receive raw data
>> |t doesn't need "frontends" and "backends"
>> |t requires a smaller code base
>> |t is faster for exchanging data but it is unwieldy for virtualizing devices

> Static definition of VM-to-VM communication channels
>> Define connections at "build time"
>> Required for safety

> No privileged backends
>> Required for safety

> SupportLinux and non-Linux guests (Zephyr, FreeRTOS, WindRiver, QNX, etc.)

'Static Partitioning VM-to-VM communication

> No privileged backends

4 N

\ / DomU 2

Hardware Device

'Xen PV Drivers

> Solid and hardened in production for years (AWS)

> Made for device virtualization, can be used for communication:
>> Network
>> Block (disks)
>> Console
>> 2D graphics, mouse and keyboard
>> Sound
>> Etc.

> Pros:
>> Very Fast Unprivileged Backends
>> Avalilable for Linux, BSDs and Windows, less common among RTOSes

> Ccons:
>> Might not be available in certain embedded RTOSes (but BSD versions exist for all PV drivers)

>> DomOless support is work-in-progress

'Xen PV Drivers and DomOless

Backend

Frontend

DomU 2

'Xen PV Drivers and DomOless i‘ X”_lNX

> Domains booted in parallel
> PV Drivers connections created after DomO0Ois up and running

> Advantages comparedto regular non-DomOless deployments:
>> Domains are still started very quickly
>> Domains can immediately begin to perform critical tasks
>> Qverall time to get PV Drivers up and running is shorter (no domain creation needed in DomO)

> To become available by the end of the year (work by Hipert/Lab @ Unimore)

'VirtIO

> Frontend Drivers are available in most Operating Systems

> "VMM" providesthe backends (e.g. QEMU, kvmtools, etc.)

> Pros:
>> Many virtual device classes

> Ccons:
>> Backends are currently required to be privileged — backends must be in DomO
— Security implications
— Safety implications
>> Support for Xen is available, but it requires non-upstream toolstack patches
>> No DomOless support

>> 14

Backend
|IVM Mll

DomO

2. ioreq

3. map and emulate

Xen

1. trap

Frontend

DomU 2

> |OREQ infrastructure upstream in Xen

It enables VirtlO backends and any other emulators to run in Dom0 (e.g. QEMU)

>> No support in the Xen tools for creating VirtlO frontends/backends yet (patch available)
PoC with virtio-block by EPAM

>> Requires Backends with full privileges, they have to be in DomO
>> Good performance with full privileges

>

v

>

v

> Support for Unprivileged Backend is work-in-progress by Linaro Project Stratos
>> Based on memory copies to/from a pre-shared memory region
>> Performance to be determined (never done before, underlying protocols designed for sharing)

> How to enable VirtlO for DomOless?
>> Could VirtlO device hotplug be used to avoid synchronous waiting during boot?

https://linaro.atlassian.net/wiki/spaces/STR/overview

'Argo

> Hypervisor-Mediated Data Transfers

HMX: pattern for data delivery

VM : Sender VM : Receiver

Receive memory

Message
B buffer

Hypervisor invoked
to send message

Hypervisor
Delivery performed by the hypervisor:

e data delivered with context (size, origin)
e writes to the receive buffer, will conform to protocol / structure

'Argo

> Pros: DORNERWORKS
>> Great performance and very strong security properties

— Hypervisor checks against malicious data senders

— Designed and optimized for memory copies
>> More lightweightthan Xen PV Drivers and VirtlO

— No Xenstore, no PV backends, no VMM needed

— Requires Event Channels and Argo drivers (BSD drivers available here and here)
>> Straightforward DomOless enablement: no need for any kind of "wait"

— No need to wait for Dom0O to complete booting to communicate with other VMs

C Y

> Current Status:

>> |t requires one Linux patch to work with DomOless
— Thanks Alec Kwapis from DornerWorks!

> Cons:
>> Requires Argo driver and Xen event channels for notifications

https://github.com/freebsd/freebsd-src/tree/373ffc62c158e52cde86a5b934ab4a51307f9f2e/sys/dev/xen/evtchn
https://github.com/uxen-virt/uxen/tree/ascara/vm-support/linux

'Static Shared Memory and Interrupts

'Static Shared Memory and Interrupts arm
&, XILINX

> Plain shared memoryregion
>> Configured at "build time"
>> Guests setups ring buffers over shared memory
>> Can use OpenAMP RPMesg or any other communication libraries based on shared memory

> Interrupt-based notifications, work with any OSes
>> New hypercall to inject SGIs (patch by Xilinx)

> Pros:
>> \ery simple
>> Works with any OS
>> (Great performance if used correctly

> Cons:
>> One non-upstream patch to enable interrupt notifications
>> Require your own communication library
>> NO dynamic connections

https://marc.info/?l=xen-devel&m=163218883611422

' PL-based communication mechanisms

Network : Network
Switch

Device Device

' PL-based communication mechanisms

Data Movers

' PL-based communication mechanisms

> Create Data Movers in Programmable Logic
>> From simple Network Devices to optimized Data Movers

> Assign PL resourcesto VMs

> VMs use PL to send and receive datato/from other VMs

> Pros:
>> Fastest for larger data sizes
>> Userspace drivers only
>> Easy to enablein any OS

> Cons:
>> Requires PL

'Summary

Solution Upstream Upstream VM-to-VM Compatibility | Performance | Unprivileged
Status for Status for Communication Backends

regular Xen DomOless vs. Device
Virtualization

Plain shared Patch available Patch Static Can run High if Yes
memory & for interrupts available for VM-to-VM anywhere implemented
interrupts interrupts Communication correctly
Argo Upstream One patch Dynamic Linux, High Yes
for Linux VM-to-VM Windows with
available Communication asmall effort
Xen PV Upstream Patches Unprivileged Most traditional High Yes
Drivers available Device OSes (Linux,
soon Virtualization Windows,
BSDs)
VirtlO Hypervisor: No Privileged Most traditional High with full No
upstream Device OSes (Linux, privileged (work in
Virtualization Windows, progress)
Toolstack: BSDs) Otherwise: ?
patches

available

https://marc.info/?l=xen-devel&m=163218883611422
https://marc.info/?l=xen-devel&m=163218883611422
https://marc.info/?l=xen-devel&m=163157291427048
https://marc.info/?l=xen-devel&m=162160305412046

' Conclusions

> Several solutions are already available, but nothing works out of the box yet

> No one-sizefits all:
>> Shared memory and notifications: best for OS compatibility
>> Argo: best for VM-to-VM communication
>> Xen PV Drivers: best for virtual devices with unprivileged backends
>> VirtlO: best for virtual device classes available

Demo

By Luca Miccio and Marco Solieri

'Demo: DomOless + PV Drivers

oroM MUz Ny,
S K
&
o
w

UNIMORE

%
o
g z .
A o UNIVERSITA DEGLI STUDI DI
% & MODENA E REGGIO EMILIA
Q2

1175

Hipert/Lab

High Performance Real Time
Lab

'Demo: DomOless + PV Drivers

MU

S = T[%/t»
% UNIMORE
2 3
= [N
%, o UNIVERSITA DEGLI STUDI DI
“31,4/ %\g’ MODENA E REGGIO EMILIA

Q S

Hipert/Lab

High Performance Real Time
Lab

NetBack

NetFront

Adaptable.
Intelligent.

