
Stefano Stabellini

VM-to-VM Communication 

Mechanisms for Embedded



Existing VM-to-VM Communication Mechanisms

˃ Existing protocols: Xen PV Drivers, VirtIO

discoverable and dynamic

create new connections at runtime

made for IO virtualization

˃ A frontend in the guest connects to the 

backend in Dom0 / hypervisor

˃ Created to virtualize devices

˃ Typically based on memory sharing

˃ VirtIO expects privileged backends

>> 2

Xen

Dom0

Dom0DomU

Frontend Backend

Hardware



Static Partitioning



Static Partitioning

˃ Static Partitioning is similar to virtualization with some key differences:

No dynamic VMs, a limited number of "partitions" instead

Focus on direct assignment of hardware resources

Configuration defined at "Build Time"

Real-Time, Safety, and Short Boot Times are often key requirements

˃ Example: Xen Dom0less



Xen Dom0less

U-Boot

Xen

Dom0 DomU 1 DomU 2

CPU CPU CPU

loads into memoryloads into memory



Xen Dom0less

U-Boot

Xen

Dom0 DomU 1 DomU 2

CPU CPU CPU

boots

boots



Xen Dom0less Current Status

˃ Static Partitions defined at build time

˃ Fast boot times, real-time support, easier to safety-certify

˃ Dom0 is not required

˃ No "out of the box" communication mechanisms available



Static Partitioning and Communication

˃ Often only VM-to-VM communication is required, not device virtualization

There are enough physical devices to directly assign them to VMs as needed

Device virtualization can be interesting for sharing an SD card among multiple VMs

˃ VM-to-VM communication is different from device virtualization

A simple VM-to-VM channel to send and receive raw data

It doesn't need "frontends" and "backends"

It requires a smaller code base

It is faster for exchanging data but it is unwieldy for virtualizing devices

˃ Static definition of VM-to-VM communication channels

Define connections at "build time"

Required for safety

˃ No privileged backends

Required for safety

˃ Support Linux and non-Linux guests (Zephyr, FreeRTOS, WindRiver, QNX, etc.)



Static Partitioning VM-to-VM communication

˃ No privileged backends

Dom0 DomU 1 DomU 2

Hardware Device

Backend Frontend



Xen PV Drivers

˃ Solid and hardened in production for years (AWS)

˃ Made for device virtualization, can be used for communication:

Network

Block (disks)

Console

2D graphics, mouse and keyboard

Sound

Etc.

˃ Pros:

Very Fast Unprivileged Backends

Available for Linux, BSDs and Windows, less common among RTOSes

˃ Cons:

Might not be available in certain embedded RTOSes (but BSD versions exist for all PV drivers)

Dom0less support is work-in-progress



Xen PV Drivers and Dom0less

>> 11

U-Boot

Xen

Dom0

DomU 1 DomU 2

CPU CPU CPU

Dom0

Backend Frontend

xl



Xen PV Drivers and Dom0less

˃ Domains booted in parallel

˃ PV Drivers connections created after Dom0 is up and running

˃ Advantages compared to regular non-Dom0less deployments:

Domains are still started very quickly

Domains can immediately begin to perform critical tasks

Overall time to get PV Drivers up and running is shorter (no domain creation needed in Dom0)

˃ To become available by the end of the year (work by Hipert/Lab @ Unimore)



VirtIO

˃ Frontend Drivers are available in most Operating Systems

˃ "VMM" provides the backends (e.g. QEMU, kvmtools, etc.)

˃ Pros:

Many virtual device classes

˃ Cons:

Backends are currently required to be privileged – backends must be in Dom0

‒ Security implications

‒ Safety implications

Support for Xen is available, but it requires non-upstream toolstack patches

No Dom0less support



VirtIO

>> 14

Dom0

DomU 1 DomU 2

CPU CPU CPU

Dom0

Backend

"VMM"
Frontend

Xen
1. trap2. ioreq

3. map and emulate



VirtIO

˃ IOREQ infrastructure upstream in Xen

It enables VirtIO backends and any other emulators to run in Dom0 (e.g. QEMU)

No support in the Xen tools for creating VirtIO frontends/backends yet (patch available)

PoC with virtio-block by EPAM

Requires Backends with full privileges, they have to be in Dom0

Good performance with full privileges

˃ Support for Unprivileged Backend is work-in-progress by Linaro Project Stratos

Based on memory copies to/from a pre-shared memory region

Performance to be determined (never done before, underlying protocols designed for sharing)

˃ How to enable VirtIO for Dom0less?

Could VirtIO device hotplug be used to avoid synchronous waiting during boot?

https://linaro.atlassian.net/wiki/spaces/STR/overview


Argo

˃ Hypervisor-Mediated Data Transfers



Argo

˃ Pros:

Great performance and very strong security properties

‒ Hypervisor checks against malicious data senders

‒ Designed and optimized for memory copies

More lightweight than Xen PV Drivers and VirtIO

‒ No Xenstore, no PV backends, no VMM needed

‒ Requires Event Channels and Argo drivers (BSD drivers available here and here)

Straightforward Dom0less enablement: no need for any kind of "wait"

‒ No need to wait for Dom0 to complete booting to communicate with other VMs

˃ Current Status:

It requires one Linux patch to work with Dom0less

‒ Thanks Alec Kwapis from DornerWorks!

˃ Cons:

Requires Argo driver and Xen event channels for notifications

https://github.com/freebsd/freebsd-src/tree/373ffc62c158e52cde86a5b934ab4a51307f9f2e/sys/dev/xen/evtchn
https://github.com/uxen-virt/uxen/tree/ascara/vm-support/linux


Static Shared Memory and Interrupts

U-Boot

Xen

Dom0

DomU 1 DomU 2

CPU CPU CPU

Dom0

ring 

buffer



Static Shared Memory and Interrupts

˃ Plain shared memory region

Configured at "build time"

Guests setups ring buffers over shared memory

Can use OpenAMP RPMesg or any other communication libraries based on shared memory

˃ Interrupt-based notifications, work with any OSes

New hypercall to inject SGIs (patch by Xilinx)

˃ Pros:

Very simple

Works with any OS

Great performance if used correctly

˃ Cons:

One non-upstream patch to enable interrupt notifications

Require your own communication library

No dynamic connections

https://marc.info/?l=xen-devel&m=163218883611422


PL-based communication mechanisms

DomU 1 DomU 2

PL

Network 

Device

Network 

Device
Switch



PL-based communication mechanisms

DomU 1 DomU 2

PL

Data Movers



PL-based communication mechanisms

˃ Create Data Movers in Programmable Logic

From simple Network Devices to optimized Data Movers

˃ Assign PL resources to VMs

˃ VMs use PL to send and receive data to/from other VMs

˃ Pros:

Fastest for larger data sizes

Userspace drivers only

Easy to enable in any OS

˃ Cons:

Requires PL



Summary

Solution Upstream 

Status for 
regular Xen

Upstream 

Status for 
Dom0less

VM-to-VM 

Communication 
vs. Device 
Virtualization

Compatibility Performance Unprivileged 

Backends

Plain shared 

memory & 
interrupts

Patch available 

for interrupts

Patch 

available for 
interrupts

Static

VM-to-VM 
Communication

Can run 

anywhere

High if 

implemented 
correctly

Yes

Argo Upstream One patch 

for Linux 
available

Dynamic

VM-to-VM 
Communication

Linux,

Windows with 
a small effort

High Yes

Xen PV 

Drivers

Upstream Patches 

available 
soon

Unprivileged

Device 
Virtualization

Most traditional 

OSes (Linux, 
Windows, 
BSDs)

High Yes

VirtIO Hypervisor: 

upstream

No Privileged

Device 
Virtualization

Most traditional 

OSes (Linux, 
Windows, 
BSDs)

High with full 

privileged

Otherwise: ?

No

(work in 
progress)

Toolstack:

patches 
available

https://marc.info/?l=xen-devel&m=163218883611422
https://marc.info/?l=xen-devel&m=163218883611422
https://marc.info/?l=xen-devel&m=163157291427048
https://marc.info/?l=xen-devel&m=162160305412046


Conclusions

˃ Several solutions are already available, but nothing works out of the box yet

˃ No one-size fits all:

Shared memory and notifications: best for OS compatibility

Argo: best for VM-to-VM communication

Xen PV Drivers: best for virtual devices with unprivileged backends

VirtIO: best for virtual device classes available



Demo

By Luca Miccio and Marco Solieri



Demo: Dom0less + PV Drivers

U-Boot

Xen

Dom0 DomU 1

CPU CPU

boots

boots



Demo: Dom0less + PV Drivers

U-Boot

Xen

CPU CPU

NetBack NetFront

xl



Adaptable.

Intelligent.


