
Low Disturbance Embedded System Tracing with Linux
Trace Toolkit Next Generation

Mathieu Desnoyers
École Polytechnique de Montréal
mathieu.desnoyers@polymtl.ca

Michel R. Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

Embedded systems in applications that include
GPS, airplanes, life support devices, video de-
coders and many others are often required
to meet hard and soft real-time constraints.
Various proprietary operating systems, like
VxWorks and µC/OS-II, aim primarily at al-
lowing programs to have an higher bound on
their execution time. They can be deployed
in embedded applications where response time
must absolutely be met.

Due to the growing interest in the Linux op-
erating system for embedded applications in
the past years, some work has been realized to
make Linux satisfy time constraints. It is cur-
rently directed towards Ingo Molnar’s real-time
preemption patch1.

This paper presents how the kernel tracer
"Linux Trace Toolkit Next Generation"
(LTTng)2 can be used to pinpoint time con-
straints problems in the Linux kernel and
validate time constraints by showing the
absence of failure in a given sample.

This article is based on a real life problem and
illustrates the usefulness of the extensibility

1http://people.redhat.com/~mingo/
realtime-preempt/

2http://ltt.polymtl.ca

built into LTTng. Providing a low lock and in-
terrupt disturbance tracing of the kernel, LTTng
will be used to find the root cause of missing
timer clock ticks.

1 Introduction

Embedded systems that need to satisfy soft and,
especially, hard real-time constraints find inter-
est in kernel tracers for validation of their spec-
ifications.

Some tracers are currently used for embedded
Linux : Linux Trace Toolkit (LTT)[4], Linux
Kernel State Tracer (LKST) and Kernel Func-
tion Trace (KFT)[1], previously known as Ker-
nel Function Instrumentation (KFI).

KFT is a function entry/exit tracer that gen-
erates a high throughput. It does give the
complete function call flow in the kernel at
the cost of a high throughput generated for an
approximate 27% preformance impact on the
system[1], depending of the fequency at which
the functions are called.

LTT and LKST instrument various key events
in the kernel that gives a good insight about
what is going on in various subsystems: dura-
tion of interrupts, scheduling, bottom half in-
terrupts and more. It generates useful informa-

1

tion to understand how the Linux operating sys-
tem works globally with a lower impact on the
system than FKT. Both the LTT and LKST ap-
proaches have limitations regarding their times-
tamp precision. Experience has also shown that
LTT does not facilitate the addition of instru-
mentation and analysis due to its monolithic de-
sign.

Linux Trace Toolkit Next Generation (LTTng)
is a complete redesign of LTT, building on its
instrumentation, reusing the RelayFS[5] kernel
to user space relay and enhancing k42 lock-
less tracing mechanism[3]. Its primary goals
are to provide precise, low disturbance, highly
reentrant tracing. As a supplementary goal, it
aims at simplifying extension of its instrumen-
tation. Linux Trace Toolkit Viewer is LTTng
trace analysis tool counterpart. It is designed
to support large traces, offer precise analysis
and be easily extensible. This new toolkit is the
fruit of a redesign work that started in 2003[2].

The focus of this article is be to present how
LTTng can be used in the real-time embedded
field to narrow time constraints problems in the
kernel and in real-time applications.

2 Problem presentation

The information that is interesting as a start-
ing point is already generated by the standard
LTTng instrumentation: we look at the period-
icity of timer interrupts. An event irq_entry is
saved each time an interrupt routine is entered.
If we only consider the ones related to IRQ 0
(timer interrupt on a x86), we can obtain the
following figure (Figure 1), which consists in
the interval between those interrupts.

The system is set to have a 250HZ clock, a 4ms
interval is thus expected. However, Figure 1
shows a clear result: some interrupts are missed

at the beginning and at the end of the trace.
In fact, the number of missed timer ticks goes
between 2 and 3, for a timer interval reaching
15ms, which is 3.75 times higher than the nor-
mal 4ms.

If we look at the detailed event list around the
missing timer IRQs at Figure 2, we see that
while the NMI interrupts generated by the NMI
watchdog should be fired before each timer
IRQ, it is executed three times between two
consecutive timer interrupts. The logical cause
of this problem is having some code that dis-
ables interrupts for a long time.

3 Instrumentation

The question that arises is: which code disables
interrupts for such a long period? The follow-
ing steps lead to the answer.

3.1 Event description

First, we add an event description for interrupt
disabling events in the locking facility3. See
the locking.xml file in the ltt-control package
at http://ltt.polymtl.ca for their ex-
act XML description. Here is an overview of
the described events with their associated data
recorded in the trace.

• irq_save : Disable IRQs, saving state. The
instruction pointer and flags are saved.

• irq_restore : Restore IRQs from previous
flags. The instruction pointer and restored
flags are saved.

• irq_disable : Disable IRQs. The instruc-
tion pointer is saved.

3A facility is a group of events, loadable dynamically.

2

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000 7000 8000

in
te

rv
al

 (
m

s)

event number

Problematic traced timer events interval

Figure 1: Problematic traced timer events interval

• irq_enable : Enable IRQs. The instruction
pointer is saved.

This XML file must be placed in the
$prefix/share/ltt-control/facilities directory of
the traced system.

3.2 Addition of tracing in kernel code

The following step is to create the tracing head-
ers from the XML event description with the
genevent package. It is suggested to work in
a temporary directory and then copy the facil-
ity “loader” c file and header in the ltt directory
of the LTTng patched kernel sources. The two
other headers go in include/linux/ltt.

The last header, ltt-facility-locking.h, is then
ready to be included in any kernel file and have

its inline functions called for logging in each
active trace, as shown in Table 1.

3.3 Workaround header circular inclusion

However, the IRQ and low-level locking (spin-
locks, rwlocks, seqlocks, ...) cannot themselves
include the LTTng header because of header
circular inclusion. Even if LTTng does not use
the low-level locking primitives, it is the case
for RelayFS, with which LTTng shares its data
structures.

This is why, in this specific case, a workaround
must be performed by creating a C file from
where the inline functions will be called. Each
of these functions will export a symbol that will
be called at the irq_* instrumentation site.

The functions look like the code snippet in

3

Table 2. Once declared extern in asm-
i386/system.h, these functions can be called
like the code snippet at Table 3.

This will have no effect if the LOCKING facil-
ity is not selected in the kernel configuration,
but will call the instrumentation function with
the address of the calling function, as the block
scoped label will be directly embedded in the
function that calls the macro. The same is done
for the irq enable, disable and restore macros.

4 Trace analysis

Once the instrumented kernel is recompiled,
booted and a trace is taken, the analysis can be-
gin. In fact, it becomes almost trivial to find the
offending function at this time.

First, the output legibility is improved if we
apply a filter to select the events we are inter-
ested in. Using the filter expression shown at
Figure 3, the LTTV analyzer will show exactly
what we want: interrupt entry for the timer,
traps for the NMI watchdog and the locking fa-
cility, which we just created.

Then, we see, in the event details from Fig-
ure 4, that the interrupts are disabled at address
0xc012e30d just before the missing interrupts.
They are then restored at address 0x012e503.
Giving these addresses to ksymoops -A gives us
the faulty function : release_console_sem
(from kernel/printk.c). The erroneous code is
shown in listing from Table 4.

This makes sense: some code regions at the be-
ginning and at the end of the LTTng tracing
code call printk and the test machine happens
to have a serial console active.

Figure 5 shows what happens if we create a
module that calls printk in a loop, therefore ex-
aggerating the problem. We see that the timer

interval is completely changed : the majority of
timer ticks have a timer interval of 10ms, some
are executed twice (this is how the Linux kernel
acts when it detects a missing timer interrupt)
and some have a timer interval over 12ms.

This is confirmed by the following test : Fig-
ure 6 shows the result of the test with serial con-
sole deactivated, which now have correct 4ms
(± interrupt latency) interval, even with a gcc
and a find executed while the trace is taken.

5 Conclusion

As this article has pointed out, adding new
instrumentation to LTTng is straightforward.
Due to its atomic operations based algorithm,
LTTng does not disturb normal kernel locking.
It therefore enables it to trace not only non-
maskable interrupts, but also critical code seg-
ments like the system.h header.

The same recipe used for interrupt disabling in-
strumentation could be applied without much
change to spinlocks, reader-writer locks, se-
qlocks and others. Only preemption deactiva-
tion tracing should be addressed carefully, be-
cause LTTng disables preemption around its
RCU list usage.

Some interest has been shown to port LTTng
to the Real-Time Linux kernel, which would
mainly consist in putting some #ifdef to select
the RT specific version of rcu_read_lock in-
stead of disabling explicitly preemption (which
must be reenabled without calling the scheduler
for reentrancy purpose).

Considering the extensibility of the LTTng
tracer and the LTTV trace viewer, there would
be benefits to port the Kernel Function Tracer
(KFT) instrumentation to the LTTng tracer.
This would make KFT benefit of system wide

4

information (like interrupt handlers instrumen-
tation) to help interpreting function entry/exit
events. Some parts of KFT, like bootup trac-
ing, should be integrated to LTTng to reach the
same level of functionality.

References

[1] Tim Bird. Learning the kernel and finding
performance problems with kfi. In CELF
International Technical Conference, 2005.

[2] Michel Dagenais, Richard Moore, Robert
Wisniewski, Karim Yaghmour, and
Thomas Zanussi. Efficient and accurate
tracing of events in linux clusters. In
Proceedings of the Conference on High
Performance Computing Systems (HPCS),
2003.

[3] Robert W. Wisniewski and Bryan
Rosenburg. Efficient, unified, and scalable
performance monitoring for
multiprocessor operating systems. In
Supercomputing, 2003 ACM/IEEE
Conference, 2003.

[4] Karim Yaghmour and Michel R. Dagenais.
The linux trace toolkit. Linux Journal,
May 2000.

[5] Tom Zanussi, Karim Yaghmour Robert
Wisniewski, Richard Moore, and Michel
Dagenais. relayfs: An efficient unified
approach for transmitting data from kernel
to user space. In OLS (Ottawa Linux
Symposium) 2003, pages 519–531, 2003.

5

Figure 2: Missing timer events

Figure 3: Filter expression

Figure 4: Event list of new instrumentation (interrupt enabling/disabling events)

6

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000 12000

in
te

rv
al

 (
m

s)

event number

Exaggerated timer interval problem with printk called in a loop

Figure 5: Printk called in a loop

 3.96

 3.97

 3.98

 3.99

 4

 4.01

 4.02

 4.03

 4.04

 0 500 1000 1500 2000 2500 3000

in
te

rv
al

 (
m

s)

event number

Correct traced timer events interval

Figure 6: Correct timer interval, with disabled serial console

7

#include <linux/ltt/ltt-facility-locking.h>

[...]

void somefunction(void)
{

void *address = 0x555;
unsigned long flags = 0x0;

trace_locking_irq_save(address, flags);
}

Table 1: Simple instrumentation invocation

#include <linux/ltt/ltt-facility-locking.h>

void _trace_locking_irq_save(const void * lttng_param_EIP,
unsigned long lttng_param_flags)

{
trace_locking_irq_save(lttng_param_EIP, lttng_param_flags);

}

EXPORT_SYMBOL(_trace_locking_irq_save);

Table 2: Locking specific instrumentation call site

/* For spinlocks etc */
#define _local_irq_save(x) __asm__ __volatile__ \

("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")

#ifdef CONFIG_LTT_FACILITY_LOCKING
#define local_irq_save(x) do { \
__label__ address;\

address: \
_local_irq_save(x); \
_trace_locking_irq_save(&&address,x); \

} while(0)
#else
#define local_irq_save _local_irq_save
#endif //CONFIG_LTT_FACILITY_LOCKING

Table 3: irq_save instrumentation

8

kernel/printk.c: release_console_sem:
[...]
for (; ;) {
spin_lock_irqsave(&logbuf_lock, flags); <-----------
wake_klogd |= log_start - log_end;
if (con_start == log_end)
break; /* Nothing to print */

_con_start = con_start;
_log_end = log_end;
con_start = log_end; /* Flush */
spin_unlock(&logbuf_lock);
call_console_drivers(_con_start, _log_end);
local_irq_restore(flags); <-----------

}

Table 4: Interrupts disabled for too long in printk

9

