Doing Bluetooth Low Energy
on Linux

Szymon Janc

szymon.janc@codecoup.pl

CO D ECO U p OpenloT Summit Europe, Berlin, 2016

Agenda

e Introduction
e Bluetooth Low Energy technology recap

Linux Bluetooth stack architecture

o Linux kernel
o BlueZb5

GAP (Scanning, Advertising, Pairing etc)
GATT

LE CoC and 6LoWPAN

Custom solutions

Tips

Future work

About me

Embedded software engineer

Works with embedded Linux and Android platforms since 2007
Focused on Local Connectivity (Bluetooth, NFC)

Open Source contributor (BlueZ, Linux, Zephyr)

e In 2015 co-founded Codecoup
o support in Bluetooth, Linux, Android, Open Source, embedded systems
o Internet of Things projects

o www.codecoup.pl

http://www.codecoup.pl
http://www.codecoup.pl

Bluetooth Low Energy

Introduced with Bluetooth 4.0 (2010)

Short range wireless technology (10-100 meters)
Operates at 2.4 GHz (IMS band)

Designed for low power usage

Profiles (applications) use GATT

Further improvements in 4.1 and 4.2 specifications
o Improved security (LE Secure Connections)
o Connection Oriented Channels

Linux Bluetooth Low Energy features

e C(Core Specification 4.2
e Generic Access Profile (GAP)

o central, peripheral, observer, broadcaster
o privacy
e Security Manager
o Legacy Pairing, Secure Connections, Cross-transport pairing

Generic Attribute Profile (GATT)
L2CAP Connection Oriented Channels
6LoWPAN

HID over GATT (HoG)

Multiple adapters support

Others

agent/UI applications
GAP GATT/ATT
storage plugins
Core/GAP MGMT L2CAP
HW drivers HCI SMP

Linux Bluetooth LE Stack Architecture

bluetoothd

kernel

Linux Bluetooth LE Stack Architecture (kernel)

e Split between Linux kernel and userspace

e Kernel:
o GAP
o L2CAP
o Security Manager
o Hardware drivers
o Provides socket based interfaces to user space

m Fordata (L2CAP, HCI)
m For control (MGMT, HCI)
o https://git.kernel.org/cgit/linux/kernel/git/bluetooth/bluetooth-next.git/

Linux Bluetooth LE Stack Architecture (user space)

e bluetoothd

o Central daemon

o D-Bus interfaces for Ul and other subsystems

o Reduces exposure to low level details

o Handle persistent storage

o Extendible with plugins (neard, legacy GATT plugins)

e Tools

o bluetoothctl - command line agent
o btmon - HCI tracer
o Set of command line tools useful for testing, development and tracing

Bluetooth Management interface

Available since Linux 3.4

Replaces raw HCI sockets

Allow userspace to control kernel operations

Provides mostly Generic Access Profile functionality (adapter settings,
discovery, pairing etc)

Required by BlueZ 5

Specification available at doc/mgmt-api.txt in bluez.git
http://www.bluez.org/the-management-interface/

btmgmt tool for command line

http://www.bluez.org/the-management-interface/
http://www.bluez.org/the-management-interface/

BlueZ D-Bus API overview

e Use standard D-Bus ObjectManager and Properties interface

e Adapters and remote devices represented as objects

o /org/bluez/hciO
o /org/bluez/hciO/dev_00_11_22 33 44 55

e \With versioned interfaces
o org.bluez.Adapter1, org.bluez.Device1 etc
o org.bluez.GattService1, org.bluez.GattCharacteristic1 etc

e Manager and Agent style interfaces for external components
o org.bluez.AgentManager1, org.bluez.Agent1

e As of BlueZ 5.42 GATT D-Bus interfaces are declared stable

Basic operations (GAP)

Adapter settings

Device discovery
Connection management
Pairing

org.bluez.Adapter1 - adapter control
org.bluez.Device1 - device control
org.bluez.Agent1 - Ul pairing agent

Scanning - devices discovery

e org.bluez.Adapter1 interface
e StartDiscovery() and StopDiscovery() methods control discovery sessions
e SetDiscoveryFilter(dict filter) for discovery session tuning
o UUID based filtering
o RSSI or Pathloss threshold
o Transport (type of scan)
o Multiple clients filters are internally merged
e Objects with org.bluez.Device1 interface represent remote devices
e \While devices are being discovered new objects are created (or updated)

Advertising

e Allows external applications to register Advertising Data
e Support for multiple advertising instances
e org.bluez.LEAdvertisement1

o Implemented by external application

o Properties define advertising type and what to include
o AD is constructed by stack (required data types are always included)

e org.bluez.LEAdvertisingManager1 on /org/bluez/hciX
o RegisterAdvertisement()
o UnregisterAdvertisement()

e Currently no support for configuring Scan Responses
e doc/advertising-api.txt

Ul bluetoothd

Pairi ng RegisterAgent()

org.bluez. AgentManager? on forg/bluez

e Dbluetoothd relies on agents for user interaction ,
o User can be a human where agent is Ul ; SetDiscoveryFilter()
. . . . org.bluez Adapter1 on forg/bluez/hcid
o Butit can also be any policy implementation
e org.bluez.AgentManager1
o RegisterAgent(object agent, string capability) - registers an agent StartDiscovery()
handler with specified local capability : org.bluez Adapterd on Jorg/bluezicid
o RequestDefaultAgent(object agent) - sets registered agent as default |
e org.bluez.Agent1

(wait for objects with org.bluez. Device1 interface)

o Implemented by application : StopDiscovery() !

. . | org.bluez Adapter on /orglbluez/haci0 H

o Called by bluetoothd when user input is needed eg. to enter or !
confirm passkey Pair() :

. B . org.bluez. Device1 on forg/bluez/hcillideyXX_YY '

e Each application can register own agent , ;
e Default agent used for incoming requests § RequestConfirmation() ;

org.bluez Agent1 on fvariabledpath

e or for outgoing requests if application has no agent registered

GATT

« jorg/bluez/hcil/dev 7C_2F 80_94 97 39
L « Interfaces
I— » org.bluez.Devicel

e Internal plugins (and their APIs) are deprecated [} srg retusking DA respeckbly
L ¥ orgfreedesktop.DBus Properties
[J Replaces profile SpeCifiC APlS w Jjorg/bluezfhciljdev 00 1B DC_EO_36_BD/service0006
. L « Interfaces
([] Stable since 542 |— = org.bluez.GattServicel
. Lvp rti
e Local and remote services share same D-Bus API I i S
o) Org bluez GattSer\nce’] | }— Object Path Device (read) = forg/bluezjhcil/dev 00_1B_DC_EC_35_BD
’) Lo | L— String UUID (read) = 0000180a-0000-1000-8000-00805fab34fh
> Org.bIUeZ.GattCharaCter|St|C1 !— » orgfreedesktop.DBus.Introspectable
0 Org.berZ.GattDescript0r1 L » orgfreedesktop.DBus.Properties
. . « forg/bluezfhcil/dev 00 1B DC_EO0 36 BD/service0006/char0007
e Remote hierarchy under device path "+ Interfaces
o lorglbluez/hciOldev_AAlserviceXX/charYYYYidescriptorzzzz |7 1%, e cacheracersnl
e org.bluez.Device1.ServicesResolved=true | | Readvalue () = (array of [Byte] value]

| —— StartNotify {1+ ()

| |— stopNotify (Jm ()

| L— writevalue (Array of [Byte] value] = (]

L v Properties

— Array of [Byte] Value (read) = [105, 87, 51, 50]
— Array of [String] Flags (read) = ['read']

indicates discovery has completed

}— Object Path Service (read) = forg/bluez/hcilidev 00 1B DC_E0_36_BD/service0006
L~ String UUID (read) = 00002a24-0000-1000-8000-00805f9b34fb
- » org.freedesktop.DBus.Introspectable

~ » orgfreedesktop.DBuUs.Properties

GATT (Il)

Register local profiles and services

o org.bluez.GattManager1
m RegisterApplication()
m UnRegisterApplication()
Local profile
o org.bluez.GattProfile1
o Bluetoothd will add matched devices to

auto-connect list

Local service

O

O

O

Represented as objects hierarchy
m Service is root node
m Characteristic is child of service

m Descriptor is child of characteristic

grouped under Object Manager
Objects should not be removed

-> /com/example

| - org.freedesktop.DBus.ObjectManager
\
-> /com/example/service0
[- org.freedesktop.DBus.Properties
| - org.bluez.GattServicel
[
| => /com/example/service0O/char0
[- org.freedesktop.DBus.Properties
[- org.bluez.GattCharacteristicl
(.
| -> /com/example/service0O/charl
| | - org.freedesktop.DBus.Properties
| | - org.bluez.GattCharacteristicl
\ \
| -> /com/example/serviceO/charl/descO
| - org.freedesktop.DBus.Properties
| - org.bluez.GattDescriptorl
\
-> /com/example/servicel
| - org.freedesktop.DBus.Properties
| - org.bluez.GattServicel
\
-> /com/example/servicel/char0
- org.freedesktop.DBus.Properties
- org.bluez.GattCharacteristicl

HID over GATT (host)

Supported by bluetoothd internally - ‘hog’ plugin
Only host support

‘Claims’ HID service so it won'’t be visible on D-Bus
Requires uhid support in kernel

“Just works” experience
o Pair mouse/keyboard
o Service is probed and connected
o Input device is created
o Device is added to whitelist for reconnection

[15674.721290] input: BluetoothMouse3600 as /devices/virtual/misc/uhid/0005:045E:0916.0002/input/input18
[15674.721494] hid-generic 0005:045E:0916.0002: input,hidraw0: BLUETOOTH HID v1.00 Mouse [BluetoothMouse3600] on 5C:E0:C5:34:AE:1C

Privacy

Allows to use Resolvable Private Address (RPA) instead of Identity (public) address
Address appears random for non-bonded devices
Bonded devices can resolve RPA
Prevents tracking
Linux supports both local privacy and remote privacy
o When device is paired its Identity Resolving Key (IRK) is stored and used for resolving RPAs
o Providing IRK for local adapter allows kernel to generate and use RPAs
o RPA s time rotated
Bluetoothd handles remote device IRK storage and loading
o After pairing Address property on org.bluez.Device1 is updated with resolved identity address
No support for local privacy in bluetoothd yet

o bluetoothd will create local random IRK (per adapter) and load it to kernel
o Patch is available on linux-bluetooth mailing list

LE Connection Oriented Channels

e Available since kernel 3.14
e Easy to use, just like any L2CAP socket
e Set address type to LE and provide PSM number

o Unfortunately obtaining address type from D-Bus is not possible

struct sockaddr_|2 addr;
sk = socket(PF_BLUETOQOTH, type, BTPROTO_L2CAP);

/* Bind to local address */

addr.I2_family = AF_BLUETOOTH;
addr.I2_bdaddr = LOCAL_ADDR;
addr.l2_bdaddr_type = BDADDR_LE_PUBLIC;
bind(sk, (struct sockaddr *) &addr, sizeof(addr));

/* Connect to remote */

addr.I2_bdaddr = REMOTE_ADDR,;

addr.I2_psm = 0x80;

connect(sk, (struct sockaddr *) &addr, sizeof(addr))

6LoWPAN over BT LE

e Available since kernel 3.16
e No stable interface yet, need to use debugfs

e But simple to use

modprobe bluetooth _6lowpan

echo “1” > /sys/kernel/debug/bluetooth/6lowpan_enable

echo "connect 00:1B:DC:E0:36:BD 1" > /sys/kernel/debug/bluetooth/6lowpan_control
bt0 interface is created

ping6 -I bt0 fe80::21b:dcff:fee0:36bd

o O O O O

Custom solutions

e Don’t want/need full bluetoothd for your tiny custom app?

e src/shared folder in bluez.git contains LGPL licenced components
o Used by bluetoothd and other BlueZ tools

Library like C API

Easy to integrate

MGMT, ATT, GATT, crypto, advertising, ECC, GAP and more

No API stability guaranteed

e Ideal for beacons or simple peripheral applications
o peripheral/ folder for peripheral example (LGPL)

e User channel

o Gives HCI exclusive access to user space application
o Sample in tools/eddystone.c (GPL)

O O O O

Tips

Use D-Bus API (documentation in doc/) whenever possible

Python D-Bus examples in test/

bluetoothctl tool as C D-Bus sample (GPL)

Don’t use hcitool unless you really know what you are doing
o Use bluetoothctl or btmgmt instead

For HCI traces use btmon instead of hcidump

Stuck with ancient kernel?

o Use Linux Backports project https://backports.wiki.kernel.org/
o Example https://bluez-android.github.io/

Extra kernel configuration via sysfs
o /sys/class/bluetooth

Extra kernel informations and experimental features via debugfs
o /sys/kernel/debug/bluetooth

https://backports.wiki.kernel.org/
http://bluez-android.github.io/

Tips (I1)

e Bluetoothd configuration
o /etc/bluetooth/main.conf

e \Want to contribute?
o Join #bluez on irc.freenode.net
o linux-bluetooth@vger.kernel.org mailing list for patches
o Read HACKING file
e Reporting a bug?
o #bluez-users on irc.freenode.net or linux-bluetooth@vger.kernel.org list

o Provide HCI traces
o Enable bluetoothd debug logs (‘bluetoothd -n -d -E’ or SIGUSR2)

mailto:linux-bluetooth@vger.kernel.org
mailto:linux-bluetooth@vger.kernel.org
mailto:linux-bluetooth@vger.kernel.org

Future work

Management API for BT 6LoWPAN

Included services support for GATT D-Bus API
Bluetooth 5 features

LE out-of-band pairing (neard)

Removal of gattrib code

Improving support for dual-mode devices

o New DeviceLE1 and DeviceBR1 interfaces (RFC)
o Extending Adapter1 interface

Questions?

Doing Bluetooth Low Energy
on Linux

Szymon Janc

szymon.janc@codecoup.pl

CO D ECO U p OpenloT Summit Europe, Berlin, 2016

