
Doing Bluetooth Low Energy
on Linux

Szymon Janc
szymon.janc@codecoup.pl

OpenIoT Summit Europe, Berlin, 2016

Agenda
● Introduction
● Bluetooth Low Energy technology recap
● Linux Bluetooth stack architecture

○ Linux kernel
○ BlueZ 5

● GAP (Scanning, Advertising, Pairing etc)
● GATT
● LE CoC and 6LoWPAN
● Custom solutions
● Tips
● Future work

About me
● Embedded software engineer
● Works with embedded Linux and Android platforms since 2007
● Focused on Local Connectivity (Bluetooth, NFC)
● Open Source contributor (BlueZ, Linux, Zephyr)

● In 2015 co-founded Codecoup
○ support in Bluetooth, Linux, Android, Open Source, embedded systems
○ Internet of Things projects
○ www.codecoup.pl

http://www.codecoup.pl
http://www.codecoup.pl

Bluetooth Low Energy
● Introduced with Bluetooth 4.0 (2010)
● Short range wireless technology (10-100 meters)
● Operates at 2.4 GHz (IMS band)
● Designed for low power usage
● Profiles (applications) use GATT
● Further improvements in 4.1 and 4.2 specifications

○ Improved security (LE Secure Connections)
○ Connection Oriented Channels

Linux Bluetooth Low Energy features
● Core Specification 4.2
● Generic Access Profile (GAP)

○ central, peripheral, observer, broadcaster
○ privacy

● Security Manager
○ Legacy Pairing, Secure Connections, Cross-transport pairing

● Generic Attribute Profile (GATT)
● L2CAP Connection Oriented Channels
● 6LoWPAN
● HID over GATT (HoG)
● Multiple adapters support
● Others

Linux Bluetooth LE Stack Architecture

Linux Bluetooth LE Stack Architecture (kernel)
● Split between Linux kernel and userspace
● Kernel:

○ GAP
○ L2CAP
○ Security Manager
○ Hardware drivers
○ Provides socket based interfaces to user space

■ For data (L2CAP, HCI)
■ For control (MGMT, HCI)

○ https://git.kernel.org/cgit/linux/kernel/git/bluetooth/bluetooth-next.git/

Linux Bluetooth LE Stack Architecture (user space)
● bluetoothd

○ Central daemon
○ D-Bus interfaces for UI and other subsystems
○ Reduces exposure to low level details
○ Handle persistent storage
○ Extendible with plugins (neard, legacy GATT plugins)

● Tools
○ bluetoothctl - command line agent
○ btmon - HCI tracer
○ Set of command line tools useful for testing, development and tracing

Bluetooth Management interface
● Available since Linux 3.4
● Replaces raw HCI sockets
● Allow userspace to control kernel operations
● Provides mostly Generic Access Profile functionality (adapter settings,

discovery, pairing etc)
● Required by BlueZ 5
● Specification available at doc/mgmt-api.txt in bluez.git
● http://www.bluez.org/the-management-interface/
● btmgmt tool for command line

http://www.bluez.org/the-management-interface/
http://www.bluez.org/the-management-interface/

BlueZ D-Bus API overview
● Use standard D-Bus ObjectManager and Properties interface
● Adapters and remote devices represented as objects

○ /org/bluez/hci0
○ /org/bluez/hci0/dev_00_11_22_33_44_55

● With versioned interfaces
○ org.bluez.Adapter1, org.bluez.Device1 etc
○ org.bluez.GattService1, org.bluez.GattCharacteristic1 etc

● Manager and Agent style interfaces for external components
○ org.bluez.AgentManager1, org.bluez.Agent1

● As of BlueZ 5.42 GATT D-Bus interfaces are declared stable

Basic operations (GAP)
● Adapter settings
● Device discovery
● Connection management
● Pairing

● org.bluez.Adapter1 - adapter control
● org.bluez.Device1 - device control
● org.bluez.Agent1 - UI pairing agent

Scanning - devices discovery
● org.bluez.Adapter1 interface
● StartDiscovery() and StopDiscovery() methods control discovery sessions
● SetDiscoveryFilter(dict filter) for discovery session tuning

○ UUID based filtering
○ RSSI or Pathloss threshold
○ Transport (type of scan)
○ Multiple clients filters are internally merged

● Objects with org.bluez.Device1 interface represent remote devices
● While devices are being discovered new objects are created (or updated)

Advertising
● Allows external applications to register Advertising Data
● Support for multiple advertising instances
● org.bluez.LEAdvertisement1

○ Implemented by external application
○ Properties define advertising type and what to include
○ AD is constructed by stack (required data types are always included)

● org.bluez.LEAdvertisingManager1 on /org/bluez/hciX
○ RegisterAdvertisement()
○ UnregisterAdvertisement()

● Currently no support for configuring Scan Responses
● doc/advertising-api.txt

Pairing
● bluetoothd relies on agents for user interaction

○ User can be a human where agent is UI
○ But it can also be any policy implementation

● org.bluez.AgentManager1
○ RegisterAgent(object agent, string capability) - registers an agent

handler with specified local capability
○ RequestDefaultAgent(object agent) - sets registered agent as default

● org.bluez.Agent1
○ Implemented by application
○ Called by bluetoothd when user input is needed eg. to enter or

confirm passkey
● Each application can register own agent
● Default agent used for incoming requests
● or for outgoing requests if application has no agent registered

GATT
● Internal plugins (and their APIs) are deprecated
● Replaces profile specific APIs
● Stable since 5.42
● Local and remote services share same D-Bus API

○ org.bluez.GattService1
○ org.bluez.GattCharacteristic1
○ org.bluez.GattDescriptor1

● Remote hierarchy under device path
○ /org/bluez/hci0/dev_AA/serviceXX/charYYYY/descriptorZZZZ

● org.bluez.Device1.ServicesResolved=true
indicates discovery has completed

GATT (II)
● Register local profiles and services

○ org.bluez.GattManager1
■ RegisterApplication()
■ UnRegisterApplication()

● Local profile
○ org.bluez.GattProfile1
○ Bluetoothd will add matched devices to

auto-connect list
● Local service

○ Represented as objects hierarchy
■ Service is root node
■ Characteristic is child of service
■ Descriptor is child of characteristic

○ grouped under Object Manager
○ Objects should not be removed

-> /com/example
 | - org.freedesktop.DBus.ObjectManager
 |
 -> /com/example/service0
 | | - org.freedesktop.DBus.Properties
 | | - org.bluez.GattService1
 | |
 | -> /com/example/service0/char0
 | | - org.freedesktop.DBus.Properties
 | | - org.bluez.GattCharacteristic1
 | |
 | -> /com/example/service0/char1
 | | - org.freedesktop.DBus.Properties
 | | - org.bluez.GattCharacteristic1
 | |
 | -> /com/example/service0/char1/desc0
 | - org.freedesktop.DBus.Properties
 | - org.bluez.GattDescriptor1
 |
 -> /com/example/service1

| - org.freedesktop.DBus.Properties
| - org.bluez.GattService1
|
-> /com/example/service1/char0

 - org.freedesktop.DBus.Properties
 - org.bluez.GattCharacteristic1

HID over GATT (host)
● Supported by bluetoothd internally - ‘hog’ plugin
● Only host support
● ‘Claims’ HID service so it won’t be visible on D-Bus
● Requires uhid support in kernel
● “Just works” experience

○ Pair mouse/keyboard
○ Service is probed and connected
○ Input device is created
○ Device is added to whitelist for reconnection

[15674.721290] input: BluetoothMouse3600 as /devices/virtual/misc/uhid/0005:045E:0916.0002/input/input18
[15674.721494] hid-generic 0005:045E:0916.0002: input,hidraw0: BLUETOOTH HID v1.00 Mouse [BluetoothMouse3600] on 5C:E0:C5:34:AE:1C

Privacy
● Allows to use Resolvable Private Address (RPA) instead of Identity (public) address
● Address appears random for non-bonded devices
● Bonded devices can resolve RPA
● Prevents tracking
● Linux supports both local privacy and remote privacy

○ When device is paired its Identity Resolving Key (IRK) is stored and used for resolving RPAs
○ Providing IRK for local adapter allows kernel to generate and use RPAs
○ RPA is time rotated

● Bluetoothd handles remote device IRK storage and loading
○ After pairing Address property on org.bluez.Device1 is updated with resolved identity address

● No support for local privacy in bluetoothd yet
○ bluetoothd will create local random IRK (per adapter) and load it to kernel
○ Patch is available on linux-bluetooth mailing list

LE Connection Oriented Channels
● Available since kernel 3.14
● Easy to use, just like any L2CAP socket
● Set address type to LE and provide PSM number

○ Unfortunately obtaining address type from D-Bus is not possible

struct sockaddr_l2 addr;

sk = socket(PF_BLUETOOTH, type, BTPROTO_L2CAP);

/* Bind to local address */
addr.l2_family = AF_BLUETOOTH;
addr.l2_bdaddr = LOCAL_ADDR;
addr.l2_bdaddr_type = BDADDR_LE_PUBLIC;
bind(sk, (struct sockaddr *) &addr, sizeof(addr));

/* Connect to remote */
addr.l2_bdaddr = REMOTE_ADDR;
addr.l2_psm = 0x80;
connect(sk, (struct sockaddr *) &addr, sizeof(addr))

6LoWPAN over BT LE
● Available since kernel 3.16
● No stable interface yet, need to use debugfs
● But simple to use

○ modprobe bluetooth_6lowpan
○ echo “1” > /sys/kernel/debug/bluetooth/6lowpan_enable
○ echo "connect 00:1B:DC:E0:36:BD 1" > /sys/kernel/debug/bluetooth/6lowpan_control
○ bt0 interface is created
○ ping6 -I bt0 fe80::21b:dcff:fee0:36bd

Custom solutions
● Don’t want/need full bluetoothd for your tiny custom app?
● src/shared folder in bluez.git contains LGPL licenced components

○ Used by bluetoothd and other BlueZ tools
○ Library like C API
○ Easy to integrate
○ MGMT, ATT, GATT, crypto, advertising, ECC, GAP and more
○ No API stability guaranteed

● Ideal for beacons or simple peripheral applications
○ peripheral/ folder for peripheral example (LGPL)

● User channel
○ Gives HCI exclusive access to user space application
○ Sample in tools/eddystone.c (GPL)

Tips
● Use D-Bus API (documentation in doc/) whenever possible
● Python D-Bus examples in test/
● bluetoothctl tool as C D-Bus sample (GPL)
● Don’t use hcitool unless you really know what you are doing

○ Use bluetoothctl or btmgmt instead

● For HCI traces use btmon instead of hcidump
● Stuck with ancient kernel?

○ Use Linux Backports project https://backports.wiki.kernel.org/
○ Example https://bluez-android.github.io/

● Extra kernel configuration via sysfs
○ /sys/class/bluetooth

● Extra kernel informations and experimental features via debugfs
○ /sys/kernel/debug/bluetooth

https://backports.wiki.kernel.org/
http://bluez-android.github.io/

Tips (II)
● Bluetoothd configuration

○ /etc/bluetooth/main.conf

● Want to contribute?
○ Join #bluez on irc.freenode.net
○ linux-bluetooth@vger.kernel.org mailing list for patches
○ Read HACKING file

● Reporting a bug?
○ #bluez-users on irc.freenode.net or linux-bluetooth@vger.kernel.org list
○ Provide HCI traces
○ Enable bluetoothd debug logs (‘bluetoothd -n -d -E’ or SIGUSR2)

mailto:linux-bluetooth@vger.kernel.org
mailto:linux-bluetooth@vger.kernel.org
mailto:linux-bluetooth@vger.kernel.org

Future work
● Management API for BT 6LoWPAN
● Included services support for GATT D-Bus API
● Bluetooth 5 features
● LE out-of-band pairing (neard)
● Removal of gattrib code
● Improving support for dual-mode devices

○ New DeviceLE1 and DeviceBR1 interfaces (RFC)
○ Extending Adapter1 interface

Questions?

Doing Bluetooth Low Energy
on Linux

Szymon Janc
szymon.janc@codecoup.pl

OpenIoT Summit Europe, Berlin, 2016

