
 1

An Overview of the SquashFS filesystem

Phillip Lougher

 2

SquashFS beginnings

● Working on Digital TV in 2001

– Used Cramfs as an initrd filesystem

– Wanted better compression

– More inode attributes
● Proper guid/uid
● Proper timestamps

– Think mountable “tar.gz”

 3

SquashFS beginnings (cont)

● First release 23rd October 2002

– Working name “cram2fs”, changed to
SquashFS one week before release...

– Mainly intended as an embedded rootfs.
Hoped it might be used for archiving

– Interestingly enough didn't think about liveCD
usage

● Knoppix probably only liveCD at the time

 4

SquashFS beginnings (cont)

● Good points

– Metadata compression

– Maximum datablock size 32 KiB

– Full uid/gid entries

– Date stamps
● Only on files and directories
● Not on symlinks, device nodes

 5

SquashFS beginnings (cont)

● “Bad” points

– Limited to total of 48 uids & 16 gids

– Maximum metadata size of 16 MiB each for
inodes and directories

– Maximum directory size 512 KiB

– Maximum file size 4 GiB

– Bit fields used to pack on disk structures

 6

Bit field example

typedef struct {
unsigned int inode_type:4;
unsigned int mode:12;
unsigned int uid:4;
unsigned int guid:4;
time_t mtime;
squashfs_block start_block;
unsigned int file_size;
unsigned short block_list[0];

} __attribute__ ((packed))
squashfs_reg_inode_header;

 7

SquashFS layout changes

Five layout changes in 24 releases over 6
years...

2.0 - 21st May 2004

2.1 - 10th December 2004

3.0 - 15th March 2006

3.1 - 1st November 2007

released in Squashfs 3.3

4.0 to be released soon...

 8

Filesystem comparison
(linux 2.6 source tree)

Sqsh-1.0 Sqsh-2.0 Sqsh- 2.1 Sqsh-3.0 Sqsh-3.1 Sqsh-4.0 Cramfs Zisofs AXFS tar.gz (-9)
0

20

40

60

80

100

120

77.2

68.1 67. 67.3
6 6

94.1

111.

95.

64.8

Filesystem

M
iB

 9

Filesystem comparison
(1200 very small files)

Sqsh-4.0 Cramfs AXFS tar.gz (-9)
0

10

20

30

40

50

60

70

80

90

100

16.94

40

48

16.81

62.02

88
92

66.35

4 bytes
40 bytes

K
iB

 10

SquashFS layout overview

super block

inode table

directory table

uid/gid table

size

size

sizemetadata metadatametadata ...

Filesystem layout

Packed metadata blocks in inode and

directory tables

 datablocks

and fragments

fragm
ent table

export table

 11

SquashFS
layout overview (cont)

Metadata block 1 Metadata block 2

inode inode inode inode inode

Inode location = Start-block + offset

Likewise Directory location = Start-block + offset

 12

SquashFS layout overview (cont)

Metadata block 1

inode inode

Metadata block 2

inode inode
Directory meta block 1

directory directory

 13

Fragments

● Introduced in release 2.0
● Many files are smaller than the block size,

especially using large blocks (128 KiB)

– Loss of compression
● compress block size tends to average size
of file

● No point using large blocks

 14

Fragments (cont)

● Pack files smaller
than block size into
shared blocks and
compress in one
whole

file

1

file

2

file

3

unused

 15

Fragments (cont)

● Fragments exhibit “locality of reference”

– Best compression achieved by packing
together similar files

● Good approximation, sort directories and
pack in alphabetical order

– “Best-fit” strategy gets worse compression

– Packing tail-ends of files larger than
datablock also reduces compression

● Mksquashfs -always-use-fragments

 16

Directory indexes

● Introduced in release 2.1

– Original directories limited to 512 KiB
● A company wanted to use SquashFS to
store 418,797+ files in one directory

● Without directory indexes ls took 16 hours!
(slow h/w).

● Fast dentry operations on large directories
(larger than 64 KiB)

– Only one metadata block decompression
irrespective of directory size

 17

Mainline kernel integration

● First attempt on 14th March 2005
● Initially went well. However attempt stalled on a

number of key issues

– 4 GiB filesystem and file limitation

– No fixed endian layout
● Complex packed bit-field macros need to
swap between different endianness

– No “..” and “.” names returned by readdir
● Quote “So we are replacing severely-limited

cramfs with also limited Squashfs”

 18

Kernel integration (cont)

● Encouraged new 3.0 layout

– Directly addressed criticisms in mainline
attempt

– Greater than 4 GiB filesystems and files

– “.” and “..”, with real inode numbers

– Hardlinks

– NFS exporting
● SquashFS 3.0 a more “grown-up” filesystem

 19

Kernel integration (cont)

● Squashfs 3.0 released 15th March 2006

– About a year since first mainline attempt
● Still with bit-fields and both big-little endian

layouts, why?

– Released to show progress was being made

– Companies hitting limits in 2.x and asking for
the new layout

– Bit-field removal and fixed little-endian a lot of
work, it would delay 3.0 by at least 6 months

 20

New 4.0 layout

● CE Linux Forum (CELF)

– Offered to contribute financially to another
mainline attempt earlier this year

● New 4.0 layout

– Finally got rid of bit fields

– Moved to fixed little endian

– Couple of other filesystem tweaks
● Increased max uids/gids to 65536.
Merged compressed uid/gid table

 21

New 4.0 layout

● Primary objective, no
loss of compression
compared to 3.0
layout

– Careful re-ordering
of filesystem
metadata to
maximise
compression

3.4 4 %
Reg 32 32 0

40 56 40
28 32 14
31 40 29
18 24 33
18 24 33

Xreg
Dir
Xdir
Sym
Dev

 22

New 4.0 layout (cont)

● New patches submitted to LKML on 17th
October 2008

– Generally favourable comments
● New patches following comments submitted to

LKML on 28th October 2008
● Third set of patches necessary following

second set of comments

– Hopefully will go into linux-next and see
mainline in 2.6.29

 23

Improving compression

● Most people just type mksquashfs

– Default options optimised for normal usage
● Increase block size

– Maximum compression now 1 MiB
● Use -alway-use-fragments option

– Pack large file 'tail ends' rather than just pack
small files

● Use -sort option

– Sort similar files so that they're placed in the
same compressed fragment

 24

Improving memory usage

● Squashfs caches the last couple of fragments
read

– block_size * number_of_cached_fragments
(default 3)

● Kernel configuration

– Select SQUASHFS_EMBEDDED

– Then change option
SQUASHFS_FRAGMENT_CACHE_SIZE

● Use -no-fragments option on Mksquashfs
● Use smaller blocks

 25

To Do

● Obviously get into mainline
● Xattr and ACL support

– Last non-supported 'big filesystem' feature
● Back to basics – improve compression...

 26

Frequently asked questions

● Why doesn't Squashfs officially support lzma
compression?

– Lzma not part of mainline kernel

– Will lzma ever become mainline?
● Probably needs clean-up to be accepted

– Adopting lzma officially will likely block
Squashfs until lzma becomes accepted

● New 4.0 layout includes compression field in
superblock

– Should simplify third-party lzma patches

– Eliminate current messy third-party hacks

 27

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

