CE Workgroup

Status of Embedded Linux
December 2013

Tim Bird
Architecture Group Chair
LF CE Workgroup
Drinking from a firehose
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Best of …
Resources
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Best of ...
Resources
Kernel Versions

- Pace of versions is consistent and good
- Kernel processes are working well
Kernel Versions

- Linux v3.7 – 10 Dec 2012 – 71 days
- Linux v3.8 – 18 Feb 2013 – 70 days
- Linux v3.9 – 28 Apr 2013 – 69 days
- Linux v3.10 – 30 June 2013 – 63 days
- Linux v3.11 – 2 Sep 2013 – 64 days
- Linux v3.12 – 3 Nov 2013 – 62 days
 - I predicted Nov 8 - was off by 5 days
- Linux v3.13-rc
 - I predict v3.13 on…
Kernel Versions

- Linux v3.7 – 10 Dec 2012 – 71 days
- Linux v3.8 – 18 Feb 2013 – 70 days
- Linux v3.9 – 28 Apr 2013 – 69 days
- Linux v3.10 – 30 June 2013 – 63 days
- Linux v3.11 – 2 Sep 2013 – 64 days
- Linux v3.12 – 3 Nov 2013 – 62 days
 - I predicted Nov 8 - was off by 5 days
- Linux v3.13-rc
 - I predict v3.13 on… January 6, 2014 (64 days)
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Best of ...
Resources
Bootup Time

- Kernel can be quick (under 1 second)
 - But it takes a lot of work, per product
- Lots of resources available for tuning
 - See http://elinux.org/Boot_Time
 - Good recent presentation: http://www.slideshare.net/righiandlr/linux-bootime-23817352
- More focus recently on user-space
 - Angstrom uses systemd (yuck)
Bootup Time

- Checkpoint/Restart for Android
 - Jim Huang, 0xlab
 - Android usually takes about 30 seconds
 - Jim achieved about 15 seconds
 - See http://www.slideshare.net/jserv/implement-checkpointing-for-android-elce2012
 - Also http://www.slideshare.net/jserv/tweak-boot
- Other commercial systems are available for snapshot booting
Graphics

- Movement to higher resolutions for some embedded (e.g. Android)
- These cases demand good graphics performance
 - Movement away from frame buffer
 - Crazy rendering stuff from Google
 - LLVM renderscript
 - Buffer management a big issue
 - Need to eliminate data copies
Graphics

- Still hoping for open source drivers for embedded GPUs
- Lots of SoC GPU OSS driver projects
 - Lima, Etnaviv, Grate, Freedreno
 - See http://lwn.net/Articles/567611
- Nvidia even helping with Nouveau
 - http://lwn.net/Articles/568038
Graphics

- **Shakeup in GPU market**
 - ARM Mali and Vivante gaining market share

<table>
<thead>
<tr>
<th>GPU</th>
<th>1H-2012</th>
<th>1H-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagination</td>
<td>52%</td>
<td>37.6%</td>
</tr>
<tr>
<td>Qualcomm</td>
<td>29.3%</td>
<td>32.3%</td>
</tr>
<tr>
<td>ARM Mali</td>
<td>13.5%</td>
<td>18.4%</td>
</tr>
<tr>
<td>Nvidia</td>
<td>4.9%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Vivante</td>
<td>0.3%</td>
<td>9.8%</td>
</tr>
</tbody>
</table>

File Systems

- UBIIFS is taking over as de-facto standard for raw flash
 - YAFFS2 doesn’t scale to large NAND
- Rise of eMMC (block-based flash)
 - New techniques needed to address this type of hardware
 - Flash Filesystem Tuning guide
 - F2FS
Flash Filesystem tuning

- CE Workgroup project to analyze filesystem performance on eMMC
- Tested different block-based filesystems on flash media (ext4, btrfs, f2fs)
- Measured the effect of different kernel tuning options
 - IO scheduler, flash geometry vs. flash part attributes and workload characteristics
- Result document is NOW available at:
 - http://elinux.org/File_Systems#Comparison_of_flash_filesystems
- Executive summary: Correct filesystem and tuning options results depend on workload (no single winner)
F2FS

- Flash-friendly filesystem by Samsung
- Mainlined in Linux version 3.8
 - Support for security attributes in 3.12
- Log-structured, with lots of tweaks
 - E.g. hot vs. cold data separation
- I heard that Moto X uses it (successfully)
- See https://lwn.net/Articles/518988/
- See ELCE/ELC talks about it
The exFAT incident

• Weird sequence of events
• Background: exFAT filesystem is covered by Microsoft patents
 • Used for sd cards – almost a requirement to support it
• exFAT code released by independent Russian developer
 • “Liberated” from Samsung
 • Not sure about license
 • But some code may have been derived from kernel
• Samsung released code a few weeks later
• I wouldn’t use this code
Memory Management

- ION memory allocator
Ion memory allocator

- Allows sharing of memory areas between kernel subsystems (and devices)
 - Which reduces copies
- Different devices have different memory constraints (cached, contiguous, etc.)
 - ION can select memory areas matching the least-common-denominator of the constraints
 - ION can manage cache relationship to memory
- But, it uses arm-specific page accessors, and allows hardware-specific optimizations
 - It will have difficulty getting mainlined
Power Management

- Evolution of power management in Linux
 - Suspend/resume, voltage and frequency scaling, longer sleep (tick reduction), runtime device power management, race-to-sleep (wakelocks/autosleep)
- New stuff starting to get crazy
Power Management

- Autosleep
- Power-aware scheduling
 - Big.LITTLE scheduling
- Memory power management
- Full tickless
• Default state of platform is sleeping, rather than awake
• Wakelock-compatible solution by Rafael Wysocki
 • Rafael: “This series tests the theory that the easiest way to sell a once rejected feature is to advertise it under a different name”
• http://lwn.net/Articles/479841/
• Mainlined in v3.5
Power-aware scheduling:

• Small-task packing
 • Try to migrate tasks to allow more CPUs to go idle
• Task placement on mixed cpu_power systems
 • Move large tasks to faster CPUs
• Resources:
 • http://lwn.net/Articles/546664 - overview
 • http://lwn.net/Articles/552885 - some resistance
 • Ingo Molnar wants to consolidate this power stuff in the scheduler – rather than spread out into power/cpufreq/cpuidle/scheduler systems
big.LITTLE

- Crazy system with small, slow, power-efficient processors, alongside big fast, power-hungry processors
- Requires some tremendous feats of scheduling to save power
 - Power-aware scheduling on steroids
big.LITTLE scheduling

- Overview: https://lwn.net/Articles/501501
- Multi-cluster power scheduling
 - https://lwn.net/Articles/539082/
- In-kernel-switcher work
 - https://lwn.net/Articles/549473/
 - Mainlined in 3.13 (probably)
- See talk at LCJ by Nakagawa-san of Renesas
 - One User Space Approach to big.LITTLE MP System on Real Silicon
- Still waiting for real-product results
Memory Power Management

• Is a form of device PM
 • With memory regions as the devices
• Restrict or migrate allocated memory into regions so that some banks/chips can be powered off
• Don’t have good measurements of power savings yet
• See http://lwn.net/Articles/568891
Full tickless

- Also known as “full dynamic tick”
 - Under some circumstance, some processors may run with no periodic ticks at all
- Some restrictions:
 - Boot CPU cannot be ‘full’ tickless
 - A CPU cannot be full tickless with more than one process
- See https://lwn.net/Articles/549580/
System Size

- Kernel size
- Library size
- Automated reduction research
Kernel size

• Cooperative memory relinquishment
 • Volatile Ranges
 • Lexmark work (membroker and ANR malloc)
 • See talk at ELC 2013 – "SystemWide Memory Management without Swap"
Library reduction

- olibc – bionic libc
 - Has good features from Android, and is smaller and more configurable than glibc

<table>
<thead>
<tr>
<th>Library</th>
<th>Size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>glibc 2.11</td>
<td>1,208,224</td>
</tr>
<tr>
<td>uClibc 0.9.30</td>
<td>424,235</td>
</tr>
<tr>
<td>bionic 2.1</td>
<td>243,948</td>
</tr>
</tbody>
</table>

- See ELC 2013 talk by Jim Huang

- Kconfig for eglibc
 - Ability to configure parts of libc to use

<table>
<thead>
<tr>
<th>Library</th>
<th>Size Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>libc-2.17.so</td>
<td>1200K -> 830K</td>
</tr>
<tr>
<td>ld-2.17.so</td>
<td>128K -> 120K</td>
</tr>
<tr>
<td>libm-2.17.so</td>
<td>610K -> 580K</td>
</tr>
</tbody>
</table>

- See ELC 2013 talk by Khem Raj
Advanced Size Optimization of the Linux Kernel

• “Auto-reduce” project
• Find automated ways to reduce the kernel
 • Link-time optimization – 380K “free” reduction from compiler flag
 • System call elimination
 • Kernel command-line argument elimination
 • Kernel constraint system
• Additional research - 50% of kernel code is unexecuted
 • Link-time re-writing
 • Cold-code compression
• See Tim Bird’s presentation on advanced size optimization of the kernel
 • Notes and slides available at: http://elinux.org/System_Size_Auto-Reduction
Security

- SMACK
- SE-Linux
- Embedded integrity
SMACK

• SMACK for Tizen
 • Simplified rule set (3 tiers, 40,000 rules)
 • See http://lwn.net/Articles/55278
SE-Linux

• SE-Android
 • Implementation of SE-Linux for Android systems

• SE-Linux was previously too big for embedded
 • Early embedded SE-Linux required 2M
 • Desktop SE ruleset is 900,000 rules

• However, SE-Android only has 1658 rules and 263 types (71K policy size)

• http://selinuxproject.org/page/SEAndroid
 • Especially: http://www.internetsociety.org/sites/default/files/Presentation02_4.pdf
Embedded Integrity

- David Safford’s talk at Linux Security Summit
 - Some nice simple things to do to lock down a device
 - Cheap or free mechanisms (without having to resort to TPM chip), to achieve:
 - Detect firmware modification
 - Prevent firmware modification (lock it)
 - Signed updates
 - Trusted boot
- http://lwn.net/Articles/568943
Tracing

- Ktap
 - Dynamic tracing, without the overhead of compiling into a module
 - Adds an interpreter to the kernel
 - Single module, that leverages ftrace, kprobes, etc.
 - Prints results in ASCII
 - Good session in LinuxCon Japan by Jovi Zhang
 - Was almost added in 3.13, but Ingo Molnar requested integration with perf
Device Tree
Device Tree (cont.)

• Let me cut right to the chase…
 • I don’t like device tree – there, I said it
• Supports single Zimage
• Requires drivers to separate hardware configuration from code
 • Pushes code away from platform data structures, to runtime configuration
 • Ugh – it offends my embedded sensibilities
• Is a royal pain
Device Tree

• New requirements for implementing ARM board support and drivers
• I have found it complicated to use
 • Not mature yet
 • E.g. dma, pinctrl still being developed
 • Everyone defining their own bindings
 • Not enough documentation and examples
 • No type-checking or compile-time optimization
Device tree (cont.)

- Change in maintainership
 - Grant Likely transferred maintainership to others
 - Not enough review of bindings
- Discussion about having device tree be long-lived ABI to kernel
 - Should be usable by other operating systems
 - Maybe move out of kernel repository
- Lots of discussions planned at ARM mini-summit/Kernel Summit
 - Lots of presentations at ELC Europe this year
- See http://elinux.org/Device_Tree
Things to watch

- Android features
 - Volatile ranges
 - ION memory allocator
- Device-tree churn/maturation
- Power-aware scheduling
Things to watch (longer-term)

- Non-volatile mass memory
- Interesting remarks by Linus in LinuxCon 2012 panel
- Won’t change a lot of kernel algorithms
- Will mostly change filesystems
 - Byte-addressable storage has big implications for long-term storage
- Applications will still segregate data between persistent and non-persistent groups
- Things take longer to change than people think
- And, persistent RAM seems to always be 5 years out
CE Workgroup Projects

• Open Project Proposal period
 • Was from September to October
• Did technical review of projects at Architecture Group meeting in late October
• Finalized member voting recently
• Out of 18 project proposed, selected 8 for sponsorship by the CE Workgroup
 • List of projects at:
 • http://elinux.org/CEWG_Open_Project_Proposal_2013 #Selected_Projects
CEWG Approved Projects

- Setup LTSI testing/validation infrastructure
- CPU Shielding capability
- Device-tree documentation
- Overwrite detection for kernel text and read-only data
- Android boot time improvements
- Compressed printk messages
- Add support for CONFIG_NUMA to ARM
- More robust UBIFS support
Brief Project Details

- Setup LTSI testing/validation infrastructure
 - Automated testing framework for LTSI
- CPU Shielding capability
 - Ability to isolate a CPU at runtime for realtime work
- Device-tree documentation
 - Better docs needed for developers, sub-system maintainers, and binding reviewers
- Overwrite detection for kernel text and read-only data
Brief Project Details (cont.)

- Android boot time improvements
 - Additional work to improve Android boot time
- Compressed printk messages
 - Size reduction while retaining messages
- Add support for CONFIG_NUMA to ARM
 - To allow for handling some memory regions in a special way - even if memory appears uniform to kernel.
- More robust UBIFS support
 - Try to fix some robustness problems when power is lost or bits flip.
Other Projects

• Long Term Support Initiative (LTSI)
Long Term Support Kernel for Industry

- LTSI 3.4 is available now
- Held workshop at LinuxCon Japan
 - Discussed testing phase of project
 - Discussed promotion of project
- New White Paper released:
 - See http://lwn.net/Articles/569634
- *Linux 3.10 is next community Long Term Stable kernel*
Outline

Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Best of ...
Resources
Other Stuff

• Tools
• Testing Frameworks
• Build Systems
• Distributions
• Wiki
• Miscellaneous
Tools

• Cortex
 • Coredump filter
 • Generates sparse coredump
 • See ELC 2013 presentation by Tristan Lelong
 • "Debugging for production systems"

• Debugging techniques
 • Good overview by Kevin Dankwardt at ELC 2013
 • "Survey of Linux Kernel Debugging Techniques"
Testing frameworks

- Autotest
 - Simple framework
 - Not cross-compiler aware?
- LAVA
 - Linaro test framework
- "Kernel Testing Tools and Techniques" BOF by Matt Porter at ELC 2013
- CE workgroup probably starting a test activity for LTSI soon
 - Need input…
Build Systems

• Yocto project
 • Lots of talks at ELCE (and previous ELCs)
 • Tutorials now online
• Buildroot
• Android

• An embarrassment of riches for build systems
Distributions

- Tizen – may be a serious competitor in embedded distros
 - Needs to open up a bit more (but it looks like it’s happening)
 - Replacing Bada at Samsung
 - Shipping in phones??
- Android use in non-CE embedded
 - Headless android
- Yocto Project = the new in-house distro
- Angstrom = packaged embedded distro
 - Very common on development boards
eLinux wiki

- http://elinux.org
- Web site dedicated to information for embedded Linux developers
 - The wikipedia of embedded linux!
- Hundreds of page covering numerous topic areas: bootup time, realtime, security, power management, flash filesystem, toolchain, editors
- Working on wiki projects:
 - Video transcription project
Miscellaneous

- Kernel Community Civility
- Embedded Contribution status
- Hardware
Kernel Community civility

• Recent discussion about being nicer to people on LKML
 • Sarah Sharp complained about abusive language and attitude on LKML
 • Some say harshness is needed to maintain quality
 • Others say system works OK as is
 • Is being discussed at kernel summit
Hardware

- Intel Quark processor
 - Power-efficient 486
 - Galileo board – arduino compatible
 - Signal of Intel getting into low end

- Apple M7 – separate, always on processor for location/motion services
 - Attempt to provide continuous location service without power overhead of main CPU
Embedded contribution status

• Contributions are improving, especially from embedded CPU vendors
 • See charts for embedded contribution status on LWN.net (top 3.11 contributors)
 • http://lwn.net/Articles/563977/

• Kernelnewbies.org/OPWfirstpatch – great document on the mechanics of a first patch contribution

• Still would be good to get a “best practices” document describing how to work with OSS

• Version gap – still with us for CE companies
 • Maybe device-tree will help us get the stable kernel API we’ve always wanted (ha ha)
Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Best of …
Resources
Best of ...

• Rules:
 • Must be actual shipping product
 • Must do something useful
 • Not a contest – just for information

• Categories
 • Smallest
 • Fastest booting
 • Longest battery life
Smallest?

- TP-Link MR3020
 - WiFi hotspot
 - 4M flash chip
 - 128K U-Boot
 - 1M for kernel
 - 2.8M root filesystem
 - 32M DRAM
- See http://lwn.net/Articles/568943
Fastest Boot

- 630 ms cold boot (beagleboard?)
- MontaVista dashboard boot in < 1 second
Kernel Versions
Technology Areas
CE Workgroup Projects
Other Stuff
Best of...
Resources
Resources

• LWN.net
 • http://lwn.net/
 • If you are not subscribed, please do so
• Kernel Newbies
 • http://kernelnewbies.org/Linux_3.?
• eLinux wiki - http://elinux.org/
 • Especially http://elinux.org/Events for slides
• Celinux-dev mailing list
• LinuxCon Japan slides
 • http://events.linuxfoundation.org/events/linuxcon-japan/program/presentations
Status of Industry

• Status = Healthy
 • Over 1.5 billion devices shipped with embedded Linux
 • This is a conservative estimate
 • Still going strong

• We used to joke about “world domination”
 • We don’t any more
Thanks!
Extra Slides

The following slides are just for reference, for embedded-related features introduced in recent kernel versions.
Linux v3.6

- Android RAM console functionality integrated into pstore
- CANFD support for CAN protocol
 - CAN with flexible data rate
- LED oneshot mode
 - Sysfs interface for certain one-time LED/gpio manipulations
- "Suspend to Both"
 - Create resume image both in RAM and on disk
 - If power dies during suspend, disk image can be used to resume
Linux v3.7

- ARM multi-platform support
 - See http://lwn.net/Articles/496400/
- ARM 64-bit support (Aarch64)
- Cryptographically signed kernel modules
 - See https://lwn.net/Articles/470906/
- Perf trace (alternative to strace)
 - Allows intermingling kernel trace events with syscall events
- Runtime power management for audio
- Kerneldoc system can output in HTML5 format
Linux v3.8

• F2FS – flash-friendly file system
 • Details elsewhere
• New thermal governor subsystem
• Memory control group support for accounting for kernel memory usage
 • Stack and slab accounting and limits
• Cpuidle support for big.LITTLE
Linux v3.9

- Ftrace snapshots
 - Grab a snapshot of a running trace without stopping
- KVM virtualization for Cortex A15 processors
- PowerPC support for transactional memory
- CONFIG_EXPERIMENTAL=y
 - And should be gone soon
- ‘make menuconfig’ now has "save" and "load" buttons
Linux v3.9 (cont.)

- Descriptor-based GPIO
 - Access GPIOs by descriptor
 - By name in addition to by number
 - Allows for grouping GPIOs
 - For “atomic” operations
 - Possibly useful for handling realtime issues
- See http://lwn.net/Articles/533632/
Linux v3.10

- Full tickless (more later)
- Single zImage for ARM
 - Lots more platforms support multi-platform kernels
 - Arnd Bergmann shooting for almost-complete coverage by v3.12
- Multi-cluster power management
 - Partial support for big.LITTLE PM
Linux v3.10 (cont.)

- Multiple ftrace buffers
- Memory pressure control group support
 - Allows for notification if memory gets low
 - http://lwn.net/Articles/531077/
Linux v3.11

- Power-efficient workqueues
 - Allow work to be done on any CPU, to avoid waking sleeping CPUs
- LZ4 kernel image compression
- Checkpatch –fix
 - Attempt to fix some simple errors
- F2FS continues to mature
 - Lots of patches from Samsung
Linux v3.11 (cont.)

• Zswap
 • "Zswap is a lightweight, write-behind compressed cache for swap pages. It takes pages that are in the process of being swapped out and attempts to compress them into a dynamically allocated RAM-based memory pool. … This results in a significant I/O reduction and performance gains for systems that are swapping“

• See https://lwn.net/Articles/551401/
Linux 3.12

- Full-system idle detection
 - Tricky rcu-based implementation to allow for fast indication of individual CPU idleness (using per-cpu variable), AND fast detection of global CPU idleness (single global variable)
- New cpu-idle driver that builds on multi-cluster power management
 - I.e. Getting closer to support for “big.LITTLE” CPU scheduling
- Lots of device drivers converting over to device tree
Linux 3.13 (probable)

- Ktap was almost added
- big.LITTLE in-kernel switcher added
- Power capping framework
 - See Documentation/power/powercap/powercap.txt
- SquashFS has multi-threaded decompression (directly to page cache)