
1

Linux from Sensors to Servers!

When is Linux… Not Linux?!

1

2

Linux runs across a huge range of systems!

CC BY-SA 2.0 – FHKE, Flickr

3!

What’s the difference between Linux
on a big thing and Linux on a little
thing?!

4!

What’s the difference between Linux
kernels, userspace and toolchains on a
big thing and a little thing?!

5!

What’s the difference between Linux
kernels, userspace and toolchains on a
system with an MMU and one without?!

6!

What’s the difference between Linux
kernels, userspace and toolchains on an
ARM system with an MMU and one
without?!

7

Overview!
! A, R and M class cores!

! Anatomy of a (uC)Linux system!
!  uClibc: with or without an MMU!

!  Multitasking without an MMU!

! What’s different in uClinux/!MMU?!
!  For the kernel!

!  For userspace!

!  In toolchain-land!

! SMP uClinux and how Linux (doesn’t) use the MPU (memory protection unit)!

8!

<marketing>!

9

Comparison via ARM’s product range!

A!

R!
M!

Application!

Real-time!

Microcontroller(eMbedded?)!

10

R! M!A!
▸ MMU!

▸ SMP!

▸ System coherency!

▸ GBs of memory!

▸ Displays!

▸ GPUs!

▸ GHz!

▸ MPU!

▸ 100s of MBs of

memory!

▸ MP-core/SMP!

▸ 100s of MHz!

▸ No MMU!

▸ SRAM (KBs-MBs)!

▸ Off-chip RAM!

▸ Tiny displays!

▸ 10s-100s of MHz!

▸ Cheap!!

Typical systems!

WARNING – MARKETING SLIDE!!

11

R! M!A!
▸  Smartphones!

▸  Laptops (Chromebook)!

▸  TV/STB!

▸  ‘Embedded’ systems!

▸  Servers!!

▸  High density storage!

▸  Baseband-processors!

▸  Automotive!

▸  Medical/industrial!

▸  More ‘Embedded’ systems!

▸  Little things!
▸  Sensors!
▸  Data loggers!

▸  Smart watches!

▸ White goods!

▸  Task-specific applications

alongside A-class!

Typical Applications!

WARNING – MARKETING SLIDE!!

12!

</marketing>!

13

 A R M

Exception Model V7A/R V7A/R V7M

Memory model VMSAv7 PMSAv7 V7M (i.e. M3/M4)

Memory protection MMU
Limited protection from MPU

– none between userspace
tasks and kernel.

MPU not used in Linux yet,
so none at all.

Pre-emptible kernel
threads Yes

No – kernel runs in handler
mode and isn't pre-empted by

SWI

Binary Formats ELF, FLAT, a.out FLAT (BFLT)

Shared libraries Via virtual memory. The way
it should be

Only 4 per application, require unique numbers managed by
custom building and configuration. No ABI for this!

Support for Real-Time No. BUT there's a low-latency patch called preempt-rt that
does 'soft realtime' (not in the mainline kernel)

Not with current Linux
implementation

14

 A R M

Exception Model V7A/R V7A/R V7M

Memory model VMSAv7 PMSAv7 V7M (i.e. M3/M4)

Memory protection MMU
Limited protection from MPU

– none between userspace
tasks and kernel.

MPU not used in Linux yet,
so none at all.

Pre-emptible kernel
threads Yes

No – kernel runs in handler
mode and isn't pre-empted by

SWI

Binary Formats ELF, FLAT, a.out FLAT (BFLT)

Shared libraries Via virtual memory. The way
it should be

Only 4 per application, require unique numbers managed by
custom building and configuration. No ABI for this!

Support for Real-Time No. BUT there's a low-latency patch called preempt-rt that
does 'soft realtime' (not in the mainline kernel)

Not with current Linux
implementation

15

V7M Exception Model!
Just three modes:!

▸ Thread mode!
▸  Privileged!
▸  Unprivileged (can use svc to escalate permissions)!

▸ Handler mode!
▸  Always privileged!

Thumb2 only (no ARM!)!

Thread mode can use the ‘main’ or the ‘process’ stack, Handler

mode always uses the main stack!

V7M is very different to V7A/R!!

16

Anatomy of a (uC)Linux system!

17

Overview!
! A, R and M class cores!

! Anatomy of a (uC)Linux system!
!  uClibc: with or without an MMU!

!  Multitasking without an MMU!

! What’s different in uClinux/!MMU?!
!  For the kernel!

!  For userspace!

!  In toolchain-land!

! SMP uClinux and how Linux (doesn’t) use the MPU (memory protection unit)!

18

‘Linux’ – MMU
Required!

‘uClinux’ – MMU
Optional!

‘uClinux’ refers to any system using the Linux Kernel and uClibc.
uClibc can be built with or without support for an MMU. Whereas a glibc/Linux
system (what people think of as 'Linux') requires an MMU, uClinux can be built to support hardware
without an MMU.

We talk about uClinux/NoMMU to refer to the kind of uClinux that we use
on R and M-class.

19

Some terminology!

▸ Linux – the kernel, built with either CONFIG_MMU or not!

▸ uClibc – a stripped down C-library, can be configured !MMU!

▸ uClinux – a system built with Linux and uClibc. May target

hardware with an MMU!

▸ uClinux/!MMU – a system built with the Linux kernel!

I’ll try to be consistent!!

20

Multitasking without an MMU!

...must be done co-operatively and carefully! The exception models of V7M and

V7A/R allow the kernel to pre-empt userspace, so it isn't quite like 'the bad

old days'. However, there is very little to protect tasks from each other.!

▸  uClinux without an MMU is not recommended for any scenario where input

is coming from 'the outside world' and security is important!!

▸  The MPU offers some extra security but the design of Linux and the MPU are

not very compatible.!

21!

▸  Virtual memory IS physical memory!

▸  Processes are loaded next to each

other.!

▸  Pointers are suddenly very dangerous!!

▸  Security is…challenging…!

▸  Data freed inside the kernel

complicates the memory layout!

Sharing the address
space!

22!

▸  Shared address space " apps cannot

be linked at a fixed location as you do when

there's an MMU. !

▸  Position independent code (PIC) is

used and every binary is relocated as it

is loaded.!

▸  R9 is used as the 'PIC offset base

register' that points to the Global

Offset Table.!

▸  Code linked at fixed offset will break!!

Position Independent
Code Required!

23!

▸  Bad or malicious pointers might point outside your

binary!

▸ One program can cause corruption in another

one, including the kernel!

▸  Tough to debug, userspace bugs can show as kernel panics!!

▸  Special case: jumping to a null pointer!

▸  Linux places a special 'SVC 0' at 0x0!

▸  if a programme jumps to a null pointer!

▸  Protection on R-class via the MPU!

Pointers: Danger!!

24!

▸  Limited ability for ‘sbrk’ operations to increase

memory allocated to a task!

▸  malloc for !MMU uses a global, shared memory pool!

▸  This approach suffers from fragmentation issues, there

may be enough memory available but not in a

contiguous chunk!

▸  Allocate smaller chunks, rather than big ones!

▸  Design restartable applications!

malloc()!

25

Overview!
! A, R and M class cores!

! Anatomy of a (uC)Linux system!
!  uClibc: with or without an MMU!

!  Multitasking without an MMU!

! What’s different in uClinux/!MMU?!
!  For the kernel!

!  For userspace!

!  In toolchain-land!

! SMP uClinux and how Linux (doesn’t) use the MPU (memory protection unit)!

26

Linux Kernel without an MMU!

27

The kernel for uClinux is no longer a fork!

▸ NoMMU support for Linux kernel merged in 2002!
Greg Ungerer (et al!)!

▸ ARM/NoMMU Support merged in 2007!
Hyok S. Choi!

▸ Cortex-M3 and Cortex-R7 support merged in 3.11 !
Uwe Kleine Konig, Jonny Austin, Catalin Marinas, !

28

Major differences with !CONFIG_MMU!

▸  No support for the fork() system call (vfork() instead)!

▸  No elf support (elf is the standard binary format for Linux). BFLT instead!

▸  ABI is different for certain operations (a modified C-library is required)!

▸  No ‘kuser helpers’ (utility functions provided by the kernel at fixed addresses !

▸  No paging, memory management which leads to fragmentation issues with

mmap() and a need to load all code instead of relying on faulting it in.!

This is an elf…!

29

What?! No fork()? – Because of CoW!

30

 ___________________!
< COW = Copy on Write >!
 -------------------!
 \ ^__^ !
 \ (oo)_______!
 (__)\)\/\!
 ||----w |!
 || ||!

31

Fork and CoW!

▸  The fork() syscall 'completely copies' the address space of the parent for the

child. Linux uses CoW to provide the 'fork' system call efficiently!

▸  The parent and child share the same pages until they're written to...!

▸  This relies on the existence of an MMU!!

▸  fork() is very commonly followed by exec(), which blows away the existing

address space. Because of this, implementing fork() for uClinux would

commonly have a huge, unnecessary overhead!

▸ #We don't have fork() on uClinux /NoMMU (uClinux with an MMU can use fork(), which

is a source of much confusion)!

32

…vfork() instead!

uClinux/NoMMU does have 'vfork()', which can be used instead:!

▸ When a new process is created with vfork(), the parent process

is temporarily suspended!

▸ Child process executes 'in the parent's address space' until !
▸  child exits OR calls execve()!

▸  ...At which point the parent process continues.!

33

…vfork()!

▸ Fork+exec can be simulated by vfork() followed by exec() of the

same binary (modified to read the new arguments and jump to

the right place)!
▸  If this is done, there is limited impact on multitasking!

▸ If a task does more than a simple fork-then-exec, ‘porting’ the

behaviour to uClinux can be non-trivial.!
▸  The child can clobber things the parent later relies on!

34

Eg uClinux spawn for the ‘dumb’ case!

35

BFLT instead of elf!

▸ Simple binary format!
▸  Designed for !MMU systems, based on a.out!
▸  Smaller header than elf!
▸  Easier to load at arbitrary location then fixup relocations!
▸  PIC required (more later)!

▸ uClinux specific toolchains required to make BFLAT from elf
images with an elf2flt linker script !
▸  -Wl,-elf2flt!
▸  Keep the elf for debug!

36

struct flat_hdr {!
!char magic[4];!
!unsigned long rev; /* version */!
!unsigned long entry; /* Offset of first executable instruction!
! with text segment from beginning of file */!
!unsigned long data_start; /* Offset of data segment from beginning of!
! file */!
!unsigned long data_end; /* Offset of end of data segment!
! from beginning of file */!
!unsigned long bss_end; /* Offset of end of bss segment from beginning!
! of file */!

!/* (It is assumed that data_end through bss_end forms the bss segment.) */!

!unsigned long stack_size; /* Size of stack, in bytes */!
!unsigned long reloc_start; /* Offset of relocation records from!
! beginning of file */!
!unsigned long reloc_count; /* Number of relocation records */!
!unsigned long flags; !
!unsigned long filler[6]; /* Reserved, set to zero */!

};!

A good reference for BFLAT: http://retired.beyondlogic.org/uClinux/bflt.htm!

37

Fixed-stack!

▸ With an MMU, VM can be used to dynamically increase the stack!

▸ !MMU " Fixed stack!
▸ We don’t event get exceptions when a program overflows the stack!!
▸  ‘Silent’ corruption that will be witnessed later!

▸ Specify stack size when building (-s 16384)!

38

uClinux/uClibc Toolchains!

39

 A R M

Toolchain availability Trivial! Widely available
Nontrivial! Codesourcery

toolchain form 2011 (if you
can find it). Build your

own/use Buildroot/ptxdist

Even less trivial than R-class
as you need thumb2 binaries.
Build your own/find someone

who has…

C Library Usually glibc uClibc

Threading pthreads, etc. Lots of higher
level languages too.

No fork()! Linux threading.
Some pthreads if you're

lucky.

No fork()! Linux threads.
pthreads doesn’t build for

Thumb2

Binary Formats ELF, FLAT, a.out FLAT (BFLT)

User Stack Dynamically allocated (up to
limit). Protected by MMU

Statically allocated when binary is loaded, overflowable!

Shared libraries Via virtual memory. The way
it should be

Only 4 per application, require unique numbers managed by
custom building and configuration. No ABI for this!

40

uClinux tools!

A uClinux toolchain is typically GCC that incorporates the uClibc C-library. !
▸  uClibc was mostly written from scratch but incorporates bits of glibc. !

Most people build their own toolchain for uClinux, but it isn’t uncommon

for !MMU builds to break. Configurations are not standardised in the same

way as they are for other tools, either!
▸ The ‘triplet’ does not describe uClinux tools as uniquely as it does for A-class/Glibc. For
example, arm-none-uclibc-uclinuxeabi is the same as arm-uclinuxabi!!

Elf2flt required as the linker, ‘strip’ doesn’t run on BFLT so many

unpatched tools *think* they’ve failed to build!

41!

Threading?!

42

What about pthreads?!

▸ Multiple different pthreads implementations: linuxthreads, nptl!

▸ None of them have THUMB2-only implementations for atomic

operations (yet)!
▸  They use ARM mode or the now-deprecated swp instruction!
▸  So no (upstream) pthreads on M-class yet!

▸ Some out-of-tree modifications to work around this:!
▸  Either requiring custom syscall!
▸ Or patched using load/store-exclusives!

43

Shared Libraries!

▸ Caveat: Different on blackfin/frv/sh with BINFMT_FDPIC_ELF!

▸ FLAT shared!
▸  Each library needs its own unique ID!
▸  Toolchain allows 256 IDs, Kernel allows only 4!!
▸  include/uapi/linux/flat.h!

 16 #ifdef CONFIG_BINFMT_SHARED_FLAT!
 17 #define MAX_SHARED_LIBS (4)!
 18 #else!
 19 #define MAX_SHARED_LIBS (1)!
 20 #endif!

44

Shared FLAT!

▸ 4 shared libraries!
0: the application itself!
1: The C library!
2: pthreads!
3: yours to re-use!!
4: yours to re-use!!

Can be used in conjunction with XIP (execute in place) to save memory.!

If you really want to do this, follow the docs at!

http://blackfin.uclinux.org/doku.php?id=toolchain:creating_libraries!

45

Overview!
! A, R and M class cores!

! Anatomy of a (uC)Linux system!
!  uClibc: with or without an MMU!

!  Multitasking without an MMU!

! What’s different in uClinux/!MMU?!
!  For the kernel!

!  For userspace!

!  In toolchain-land!

! SMP uClinux and how Linux (doesn’t) use the MPU (memory protection unit)!

46

How does Linux (not) use the MPU?!

MPU = Memory Protection Unit!

47

Protection regions, instead of VM!

▸ The MPU lets you define up-to 16 (overlapping) regions!

▸ Regions can have!
▸  Different access permissions!
▸  Different memory types!
▸  Can be marked ‘XN’!

▸ Higher numbered regions have higher ‘priority’ when regions overlap!

▸ Regions can be divided in to subregions!

▸ R-class: cp15, M-class: memory-mapped!

48

MPU is required for SMP uClinux!

▸ In order for exclusives to work, the

correct memory attributes must be

set using the MPU.!

▸ Secondary cores need their MPU

configured before entering the C-

world!
▸  Bring-up looks very similar to what we

do for MMU/Page tables!

▸ Currently a very minimal setup!

49

Linux for R-class makes minimal use
of the MPU!
▸ Set up regions to ensure that DRAM is

shared so SMP works.!

▸ Mark all of the rest of the address space as

'device' memory, XN!

▸ Protect the vectors from being accessed or

executed from userspace (this also stops null

pointer offsets from causing a kernel panic,

instead just killing the task)!

50

How can we make better use of the MPU?!

▸ Dynamically moving windows?!
▸  Fault every time we read outside of the currently mapped windows,

determine permissions of the faulting address, map region if necessary.
This has a lot of overhead. A high percentage of memory accesses will
fault! Breaks deterministic memory access!!

▸ Disable Linux's funky memory management?!
▸  Don't free things inside the kernel, so we can at least protect the kernel

from userspace – a reasonable compromise!

▸ Make malloc always give MPU mappable region sizes!
▸  This wastes lots of memory, suboptimal on tiny systems!!
▸  Still needs us to remap regions on context switch!

▸ Map ‘guard region’ at the end of the stack to detect overflow!

51

References!

▸ Free Electrons uClinux Introduction:!
▸  http://free-electrons.com/doc/uclinux_introduction.pdf!

▸ Blackfin uClinux wiki!
▸  http://blackfin.uclinux.org/!

▸ uClinux ‘State of the Nation’ (‘07)!
▸  http://elinux.org/images/e/e4/Uclinux-sotn.pdf!

52

Questions & Suggestions?!

