Using «dot clock» Displays in
Embedded Linux Devices

Vitaly Wool
EmbeddedAlley Solutions Inc.



What is a «dot clock» display?

. «dot clock» display

« Operates on 4 control signals
* Vertical synchronization (VSYNC)
» Horizontal synchronization (HSYNC)
* Pixel clock (DOTCLK)
 Data output enable (OE)
« Exposes those signals to the outer world
* RAM-less

+ This signal scheme is also called RGB




«Dot clock» display...

* No on-chip RAM for
Image storage

+ Exposes control
signals to the
outside

» Requires LCD interface capable to handle
the control signals

» Requires careful programming



Typical LCDs for SoCs...

e _...are with internal
RAM

+ So-called «frame
buffer» type

* No need to expose control signals
+ May expose VSYNC though

« Easy to program
+ No need to specify timings and such :-)
* No special requirements on the LCD interface



Frame buffer type LCDs

« Supports XXYxBPP at max

* Need to have XXY XBPP / 8 bytes of RAM
« That might be a lot
— Expensive design

« The main data flow takes place internally

- Stable image display

+ No requirements on the SoC throughput
 Display data update on demand

« Data taken from user's buffer in main RAM



«Dot clock» displays

« Use RGB sginal scheme
+ VSYNC, HSYNC, DOTCLK, OE

« Use a piece of
external RAM

*

*

*

Cheaper design
More flexibility

Constant load of
the bus

Sophisticated
hardware LCD
interface

Ore Line (HSYNC) Period

DOTCLK

ENABLE
HSYNC Wait Count

D7-DO :X__X:

<« N N N N -
Horizontal Valid Data Count



«Dot clock» hardware

requirements

 LCD interface

+ Should support RGB signaling

Should be programmable for delays and timings
Should be accurate enough to handle these
Should support DMA transfers of course

NB: But we get TV-out support almost for free :-)

- DMA

+ Should support flow control from LCD interface
+ Should support linked-list transfers

*

*

*

*



Why linked lists?

* Single transfer * Linked list
+ Interrupts flood + Less interrupts
+ Hard + Interrupts may be
requirements on served
interrupt latency asynchronously
+ Discontiguous + Discontiguous RAM
RAM framebuffer framebuffer may be

not allowed allowed



Sample ARM SoC

» Targets smart phone & PND market
+ SD/SDHC support
« 512 MB MLC NAND
+ 64 MB RAM
« USB OTG support
+ 320%x240x24 BPP QVGA display
+ GSM/UMTS/GPRS
« GPS
« Dotclock- and TV-out capable LCDIF



...more SoC characteristics

» Performance
+ CPU up to 320 MHz
« AHB up to 160 MHz
« mDDR up to 133 MHz

- DMA
« M2M and M2P/P2M

+ Supports chaining
+ Operates 64K buffers at max



Linux framebuffer driver

Implementation

* Init sequence
+ Configure the timings and counters
- Easily left out to platform code

Allocate channel and buffers for DMA

* Line boundaries should be maintained
— Take advantage of horizontal blanking period delay
— So buffer size is multipe of 240%4

Chain the DMA buffers
Set the dot clock mode
Start the DMA channel

*

*

*

*



Software Design

« DMA chain

+ circular

? ? ? @ @ + 5X60K (=61440b)

link buffers
DRAM

+ Buffers may and
may not be
contiguos

|

1 Videa Fiame bffer 1| - Interrupt-less mode

+ DMA suppors LCD IF
flow control




Hardware Peculiarities

« DMA is on AHB3

+ USB/LCD share
AHB3 via DMA

 |/D caches may
block AHB1/AHB?2

 M2M DMA
operates on AHBO

DRAM




Hardware challenges

« AHB buses are round-trip synchronous
« A request to external RAM blocks AHB3

* No other blocks may transfer data during the request

» USB can consume AHB for up to ms

« RAM controller blocks all other transfers while
handling the AHB

« The I/D caches can block RAM for large time periods

« DMA controller can only handle one request
round-trip at a time

+ if e. g. NAND is being serviced then LCD IF cannot be
serviced



Some related calculations

NAND at 10 MB/s
LCD at 15 MB/s

One RAM read operation takes ~10 bus
clocks

S0 250/4 = 63 MHz



Problems experienced

» Underruns

+ On intensive NAND operations

+ On intensive USB operations

+ On some frequency scaling operations
* Flickering

+ On some frequency scaling operations

+ During the driver initialization from the early
splashscreen



Diagnosis

This solution is totally inacceptible.



How to handle?

* The idea is to use SRAM
+ Kind of double buffering approach

« SRAM is only 64K

+ Will have to use a SRAM buffer for several
DRAM ones

+ Tearing and wrong data display possible
* Problem mitigation

+ Use 2 SRAM buffers
* Size to be carefully considered



SRAM buffering approach

* Even number of RAM
buffers
+ Odd ones go to B1
« Even ones go to B2

+ Buffer switch per LCD
Interrupt

« SRAM to LCD data flow

> o + No underruns
o o Ry By Sm S » Update delays possible

...but may be avoided

RA

WY



SRAM buffer size considerations

.t =L xt
int C hsync
+ L_=lines per SRAM buffer
. t_ =time between LCD interface interrupts

. ’[hSynC = horizontal blanking period
) B — L X L
C C w
. B_=bytes per SRAM buffer
+ L =Y X 4 =Dbytes per line

- The number of initial buffers depend on B_



SRAM buffer size tradeoffs

- Larger L

+ Less interrupts
* Less CPU load
* Less tearing risk

« Consumes more SRAM
+ Smaller number of initial buffers
- Easier to program

. Smaller LC

- All the opposite ;-)



Conclusions

» «Dot clock» LCDs are possible to employ
IN embedded systems

» Careful configuration examination and
design are very important
+ Inaccurate hardware design may well lead to
overcomplicated/fragile software
Implementation
* Linux kernel framebuffer framework is
ready enough for dotclock displays' drivers



Questions?

mailto:vital@embeddedalley.com



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

