
Introduction to HyperBus Memory
Devices
Vignesh Raghavendra
Texas Instruments India
vigneshr@ti.com

1

About me
• Software Engineer at Texas Instruments
• Co-maintainer of Memory Technology Devices (MTD) framework in kernel
• Presentation is based on learning that I had when adding HyperBus framework

to support controller on TI’s AM654 SoC.

2

What’s in the presentation?

• HyperBus and types of HyperBus
Memories

• HyperBus Protocol
• HyperFlash command set
• HyperBus Kernel Framework
• Writing a controller driver
• Recent developments and future

enhancements

3

What’s HyperBus?

• 8 data lines, Double Data Rate bus
• Single or Differential clocking
• Bi directional Data Strobe for accurate data capture

4

SoC
(HyperBus
Controller)

HyperBus
Memory

x8 IO bus

Differential/single clock
(CLK/CLK#)

Chip Select (CS#)

Data Strobe (DS)

HyperBus Memory Devices
• On board embedded storage devices
• Two types of memory devices are available today

– HyperFlash
• Persistent Storage

– HyperRAM
• Pseudo static, volatile storage

5

HyperFlash
• NOR technology based storage device

– Organized into pages and sectors
– 16 bit bus, 16 bit word size

• Unidirectional Data Strobe (Read Data Strobe)
• Can operate at up to 200MHz frequency

– Read throughput can be as high as 400MB/s

• Draws upon the legacy features of both parallel and serial memories
• Alternative to Octal SPI NOR flashes

6

HyperRAM
• Self Refresh DRAM (Pseudo Static RAM) with HyperBus interface
• Same number of signals as HyperFlash
• Bi directional Data Strobe to indicate data validity and to handle additional

latency during refresh

7

Phases of a transaction

8

Command-
Address (CA)

Phase
(6 byte)

Wait Phase
(0-n cycles)

Data Phase
(2-n bytes)

Communication Protocol

9

Command Address (CA) Bits

• Flash may be organized into half pages which is 16 bytes in size
• Half page refers to smallest region for which ECC is calculated

10

Bit 47 Bit 46 Bit 45 Bits 44-16 Bits 15-3 Bits 2-0

R/W#
Target
addr
space

Burst type
Address
(half-page
selector)

Reserved
Address
(word within
half-page)

0: write
1: read

0: mem
1: reg

0: Wrapped
1: Linear

(A31- A3)
29 bits

Don’t care
(Set to 0)

(A2-A0)
16 bytes

Programming sequence
• HyperFlash is compliant with Common Flash Interface (CFI) Extended

Command Set 0002
– Widely used by AMD/Fujitsu/Cypress Parallel NOR flashes
– Driver implementing command set: drivers/mtd/chips/cfi_cmdset0002.c

• Flash powers up in read mode (default on POR or after HW or SW reset)
• Start read transaction(CA47 = 1) to desired address

– Flash responds with data after predefined wait cycles
– Needs to be 16 bit aligned addresses

11

Write Programming Sequence
• Sequence of writes to specific addresses make flash enter programming mode

– Unlock1
• Value: 0xAA → Address: 0x555

– Unlock2
• Value: 0x55 → Address: 0x2AA

– PP command Write
• Value: 0x25 → Address: Sector start address (SA) where buffer is present

– Value: word count (no of bytes to update) → Address: SA
– Value: data[0 – wc] → Address: start address (within Sector)
– Value: 0x29 → Address: SA (confirm programming)

• Data is buffered before being written to flash
– Supports Buffered writes of 512 bytes

• Note: Address refers to 16 bit word address

12

Address space overlays (ASOs)
• Different flash address spaces:

– Flash memory array
• Default region – where actual data is stored

– ID/CFI space
• Device ID and Common Flash Interface table

– Status Registers
– Persistent Protection bits
– More vendor specific offerings

• ASO Entered/Exited by doing a specific sequences of writes
• Entire flash device address range or selected sector is overlayed with new

region

13

Parallel CFI Flash vs HyperFlash
• Write/Erase completion polling

– HyperFlash provides status register
– Parallel NOR is mostly DQ polling

• Buswidth
– Parallel NOR flash come in various buswidth and may be banked/interleaved
– Single contiguous bank and 16 bit bus (x8 IO lines with DDR)

• Command set
– Parallel NOR flashes have multiple different command set standards
– Supports a single command set

14

Types of HyperBus Memory Controllers (HBMC)
• Dedicated HyperBus Controllers

– Understands only HyperBus protocol
– Support memory mapped IO (MMIO) access to flash

• Multi IO Serial controllers
– Support multiple Serial Protocols such as: SPI NOR, SPI NAND, OSPI, HyperBus etc
– May or may not support MMIO access to flash

15

MMIO capable controllers
• Hardware can generates appropriate HyperBus transaction

– Software need not manually provide 48 bits of CA phase

• Exposes entire flash to CPU at pre defined SoC Address space
– Hence can also support XIP

16

HyperBus Memory
Controller (HBMC)

CSMemory
mapped
interface

Addr: 0x80000000

Addr: 0x8FFFFFFF

HyperFlashHyperBus

CA wait data

Write 0x5555 to
0x8000000 Write 0x5555 to 0x0

Kernel support for HyperFlash

• HyperBus support merged in v5.3
– Supports HyperFlash
– Support MMIO capable HyperBus

controller
– Hooks upto existing CFI framework

• CFI layer implements command set
– Legacy driver used with Parallel NOR

flashes
– Driver had to be modified to support

Status Register polling to work with
HyperFlash

17

MTD Layer

CFI cmdset 0002 driver

Map framework

HyperBus framework

HBMC driver

Hardware + Flash

Writing a HBMC driver
• Driver needs to implement hyperbus_ops

18

struct hyperbus_ops {
u16 (*read16)(…)

 void (*write16)(…);
 void (*copy_from)(…);
 void (*copy_to)(…);
 int (*calibrate)(…)
};

hyperbus_ops
• read16()

– Read 16 bit of data from flash in a single burst.
– Used to read from non default address space, such as ID/CFI space

• write16()
– Write 16 bit of data to flash in a single burst.
– Used for non default address spaces as well as for single word programming

• copy_from()
– Read data from flash memory array

• copy_to()
– Write data to flash memory array

• calibrate()
– Calibrate controller by using a known data pattern

19

Registering Device
• Populate per device struct:

struct hyperbus_device {
struct map_info map;
struct device_node *np;
struct mtd_info *mtd;
struct hyperbus_ctlr *ctlr;
enum hyperbus_memtype memtype;

};
• Register each driver with core:

int hyperbus_register_device(struct hyperbus_device *hbdev);

20

Device Tree representation

21

hbmc: memory-controller@47034000 {
compatible = "ti,am654-hbmc";
reg = <0x0 0x47034000 0x0 0x100>,
 <0x5 0x00000000 0x1 0x0000000>;
#address-cells = <2>;
#size-cells = <1>;
ranges = <0x0 0x0 0x5 0x00000000 0x4000000>, /* CS0 - 64MB */

 <0x1 0x0 0x5 0x04000000 0x4000000>; /* CS1 - 64MB */

/* Slave flash node */
flash@0,0 {

compatible = "cypress,hyperflash", "cfi-flash";
reg = <0x0 0x0 0x4000000>;

};
};

Accessing from user space
• Just like any other MTD devices

– Device is exposed as /dev/mtdX to user space

• Use mtd-utils
– http://git.infradead.org/mtd-utils.git

• Flash Filesystems such as UBIFS can be used.

22

HyperFlash and xSPI
• HyperFlash protocol is now part of JEDEC xSPI specification

– JESD 251: Extended SPI specification

• xSPI aims to standardize command set and protocol for programming of Serial
flashes

• HyperFlash protocol is described in Profile 2.0 of xSPI specification
– Separate profile than traditional SPI NOR

23

Comparison to traditional SPI flash protocol

24

Command-
Address
Phase

(6 byte)

Wait
Phase

(n cycles)

Data
Phase

(n bytes)

Command
Phase

(1-2 byte)

Address
Phase

(3-4 bytes)

Wait
Phase

(n cycles)

Data
Phase

(n bytes)

SPI flash protocol

HyperBus protocol

xSPI compliant HyperFlash
• HyperFlash powers up in SPI mode (1S-1S-1S)

– Backward compatible with legacy SPI commands
• Transaction phase: 1 byte cmd – 3 byte address - data

• Can be configured to work in HyperBus mode (CA-data) mode by setting a
configuration register bit

• Serial Flash Discoverable Protocol (SFDP) table: JESD216D
– Discover and configure flash in manufacturer agnostic way

25

Extending spi-mem for HyperFlash
• SPI subsystem has spi-mem layer that abstracts SPI memory devices
• spi_mem_op currently supports cmd-addr-data

– cmd is 1 byte
– upto 4 byte addressing

• Supporting dual protocol capable flashes (SPI and HyperBus) and such
controllers would need update to spi-mem-op template
– Add new member to indicate HyperFlash mode
– Extend cmd and address field to accommodate HyperFlash protocol

• HyperBus and SPI NOR core drivers can then use spi_mem_ops to support
dual protocol capable flashes

26

Future Enhancements
• Writes are done at word granularity

– Can be improved to work at buffer granularity

• DMA support for reading data from flash
– Handling vmalloc’d buffers passed from Flash filesystems like UBIFS

• Use spi_mem_ops
– Support Multi protocol SPI controllers
– Support xSPI complaint SPI and HyperBus compatible devices.

References
• Specification and flash datasheets

– HyperBus specification: https://www.cypress.com/file/213356/download
– HyperFlash: https://www.cypress.com/file/213346/download
– HyperRAM: https://www.cypress.com/file/183506/download

• Source:
– https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/mtd/hyperbus

Credits
• Texas Instruments Inc.
• The Linux Foundation

Q & A

E-mail: vigneshr@ti.com
Thank You!

