SELinux & AppArmor
- Comparison of Secure OSes

Apr 18 2007
Yuichi Nakamura

Research and Development Department
Hitachi Software Engineering Co., Ltd.
ynakam@hitachisoft.jp

HitachiSoft
P 5. %45, <

l Contents

0. Background

1. Introduction of SELinux & AppArmor
2. Comparison

— 2.1 Feature

— 2.2 Porting to embedded

— 2.3 Performance

3. SELinux activities in Japan

2

Copyright © 2007 Hitachi Software Engineering Co_

l Background

* Embedded devices are being connected to networks.
— Attackers can also reach devices

* Security of embedded devices is similar to Win 95.
— In some devices
* All processes are running as “root”
* No password

* What happened to PCs will happen in near future.
— Worm, virus, crackers...
— Some devices were already exploited

3

Copyright © 2007 Hitachi Software Engineering Co.,_

l Threats

* root can do everything
— Privilege escalation is known even running as normal user
* such as bugs in suid programs

* PDA, mobile phone
— |f browser open malicious page
* Virus is executed..
— Private data is stolen (by wiretap, key logger)
— Springboard
* Consumer devices (TV, DVD, audio player etc)
— Attackers can intrude from network interface
* Download virus with data

* Destroy system, disclose data, springboard, wiretap etc
4

Copyright © 2007 Hitachi Software Engineering Co., _

l Requirement for embedded security

* Embedded devices
— Restricted resource, Hard to update
* Security technologies
— Packet filtering
* Useful, but can not protect open ports
— IDS, Anti-virus
* Consumes resources

* Need update of pattern file, not effective to zero-day
attack

— Secure OS
* Simple, effective even without security patch
* Useful for zero-day attack
* Hardware independent °

Copyright © 2007 Hitachi Software Engineering Co., _

l Secure 0S

* Access control feature

— Assign least privilege to process

* Example: HTTPD can access only homepage file and
configuration file.

— MAC (Mandatory Access control)

* No one (including root) can not bypass
* Implemented in Linux kernel

* Policy: Important component
— Configuration of Secure OS: Subject, object, access type

Subject object Access type
/usr/sbin/httpd |/var/www read
/usr/sbin/httpd |/etc/httpd.d read
/usr/sbin/name |/var/named/ read

d 6
Copyright © 2007 Hitachi Software Engineering Co., L_

l What Secure OS can do?: Before

* Network music player

.

Buy MP3

Remote contral

Springboard attack
etc... J Etall wiretap, steal passwog
ete...

Attackers can do everything

7

l What Secure OS can do?: After

* Network music player

Buy MP3

rol

Remote conf

Difficult to use as
springboard, install wiretap
Can not exec shell, launch

Write ok

N

3

Rrad " Ng access right for:)
Springboard attack
Install wiretap etc
/

services, write system files
-efc. A

Assign access right

* Attackers/malwares have limited access right

* Effective to Zero-day attacks, without secu riti Eatch
Copyright © 2007 Hitachi Software Engineerin

8

l SELinux and AppArmor

* Two major Open Source Secure OSes
— Also two extreme
* security vs. usability

* SELinux - Strict security, hard to use
— Developed by NSA
— Included in mainline kernel(2.6), Redhat, Fedora

* AppArmor — Not strict security, easy to use
— Was called Subdomain, developed by Immunix
— Now maintained by Novell
— Included in SUSE Linux

9

Copyright © 2007 Hitachi Software Engineering Co., _

1. Introduction of SELinux & AppArmor

HitachiSoft
P— %15, B<

l Overview of SELinux

* Access control feature: TE
* Example of policy

11

!Main feature : TE (Type Enforcement)

Label based access control

Domain Identifier for process
Type Identifier(label) for resources
Controls permission between domain and type

Process Permission Resource

httpd read File /varilwww
Domain:httpd t |=———— | Type:web contents t

12

Copyright © 2007 Hitachi Software Engineering Co.,_

l Fine-grained access control

* File, network(port number, NIC, IP), IPC, user, other privilege

* About 700 permissions

13

l Configuration of policy

* The most important feature
— What domain can access what access to what types?

Ex Web server(domain httpd _t :allowing access to
homepage
allow specify domain, type, permission

allow httpd t web contents_t file:{ read };

S

Domain Type Permission
Assign label(=type) to resource
Ivar/www(|/.*) system_u:object_r:web contents t

* Many lines of allows(10k-100k) are required
* macro is used

14
— Bunch of alloys.is.sWmRarZed:A)maC O

Example of policy

ebind.te: allowing acces

type named. t ebind.fc:assigning label

type named exec t: letc/rndc.* -- gen_context(system_u:object_r:named_conf_t,s0)
init_daemon__domain(named_tnamed_exec/_Q;C/rndC\.key - gen_ConteXt(SyStem_U:ObjeCt_r:dnsseC_t,SO)
lusr/sbin/lwresd -- gen_context(system_u:object_r:named_exec _t,s0)
kernel_read_kernel_sysctls(named_t) /usr/sbin/named -- gen_context(system_u:object_r:named_exec_t,s0)
kernel_read_system_state(named _t) lusr/sbin/named-checkconf -- gen_context(system_u:object_r:named_checkconf_exec_t,s0)
kernel_read_network_state(named_t) /usr/sbin/r?ndc -- gen_context(system_u:object_r:ndc_exec_t,s0)
kernel_tcp_recvfrom(named_t) ,

/var/log/named.” -- gen_context(system_u:object_r:named_log_t,s0)
corenet_tcp_sendrecv_all_if(named_t))
corenet_raw_sendrecv_all_if(named_t) /var/run/ndc - gen_context(system_u:object_r:named_var_run_t,s0)
corenet_udp_sendrecv_all_if(named_t) Ivar/run/bind(/.*)? gen_context(system_u:object_r:named_var_run_t,s0)
corenet_tcp_sendrecv_all_nodes(named_t) /var/run/named(/.*)? gen_context(system_u:object_r:named_var_run_t,s0)

corenet_udp_sendrecv_all_nodes(named_t), o .
corenet_raw_sendrecv_all_nodes(named_t)ifdef("distro_debian’, .
corenet_tcp_sendrecv_all_ports(named_t) /etc/bind(/.*)? gen_context(system_u:object_r:named_zone_t,s0)

corenet_udp_sendrecv_all_ports(named_t) /etc/bind/named\.conf -- gen_context(system_u:object_r:named_conf_t,s0)
corenet_non_ipsec_sendrecv(named_t) o _45

corenet_tcp_bind_all_nodes(named_t)

corenet_udp_bind_all_nodes(named_t)

...293 lines
...100 kinds of macros

Difficult to understand

15

Copyright © 2007 Hitachi Software Engineering Co.,_

l Overview of AppArmor

* Easier than SELinux
* Implemented as LKM

* Recently, often compared with SELinux

16

l Feature

* 1. Access control
— Controls file and POSIX capability
— Path name-based
* Label is not used
— Profile
* = “policy”

* 2. GUI Tools
— Integrated in YaST
* Generating profile
* Log report
* Not so important for embedded ©

17

Copyright © 2007 Hitachi Software Engineering Co_

l Path name based access control

* Path name based:
— ldentify file with “path name”
— Easy to understand

* Example:

fusr/sbin/httpd{

/var/www/** r,

}

- [/usr/sbin/httpd can read under /var/www

18

Copyright © 2007 Hitachi Software Engineering Co_

l Permission to file

* Basic permission: r,w,Xx,l
—r read
— W : write
— IX . execute
— | : link(remove file)

19

l POSIX capability

* Controls capability
— Capability
* Important operation other than file access
* Example:
—net_bind_service: bind well-known port
—net_raw: use raw socket
— For detail: see $man capabilities

20

Copyright © 2007 Hitachi Software Engineering Co._

l Configuration for profile

* Simple, easy to understand

/usr/sbin/named { -> path to
exectable

#include <abstractions/base> Common
#include<abstractions/nameservice>
capability net bind service,
capability setgid, Capability
capability setuid,
<snip>
/var/lib/mamed/** rwl, Access to file

/var/run/named.pid wl,

} 21
Copyright © 2007 Hitachi Software Engineering Co_

2.1 Comparison of feature

HitachiSoft
P— %15, B<

l Common : LSM

* Both use LSM for implementation

* LSM: Linux Security Module
— set of hooks in kernel to check security
— is included in mainline from 2.6

* Using LSM:
— SELinux, AppArmor, LIDS (for 2.6)

* Not using
— TOMOYO Linux, LIDS (for 2.4)

23

Copyright © 2007 Hitachi Software Engineering Co._

l Difference between SELinux and AppArmor

* Granularity of permission
— SELinux:
* File, network, IPC, POSIX capability etc..
— AppArmor
* File + POSIX capability

— AppArmor can reach SELinux in theory, because
both use LSM.

* How to identify resource
— The most fundamental -> next

24

Copyright © 2007 Hitachi Software Engineering Co.,_

l How to identify resource

 Fundamental difference
— Affects security and usability

* Label based vs Path name based
— Label: lower usability, higher security
* Assign label to file
* SELinux
— Path name: higher usabillity, lower security
* |dentify file with path name
* AppArmor, TOMOYO Linux

* Compare them by showing benefit and loss of pathname

25

Copyright © 2007 Hitachi Software Engineering Co., _

l Benefit of path-name

* High usability, easy to understand
* No need to extend file system

— Label base: File system have to be extended to store
label

* Implementing policy generation tool is easier
— -> Next

* Nothing happens when i-node number is changed
— -> Next

26

Copyright © 2007 Hitachi Software Engineering Co._

l Benefit of path-name: policy generation

* Example case:
— PHP trid to write /var/www/html/write/test.txt
— But, access denied by Secure OS
— Have to generate policy from log

* SELinux
— 1) label under /var/www/html -> httpd_sys content t
— 2) Log says..
* httpd _t was denied to write to httpd_sys content t
— 3) Generate policy from log
* allow httpd_t httpd_sys content _t:file write;
* - > allowing write access whole “/var/www” !
— Unnecessary access is granted

* AppArmor
— 1) log says
* /usr/sbin/httpd is denied to write /var/www/html/write/test.txt

— 2) Generate policy(=profile) from log
— Jusr/sbin/httpd{

[var/www/html/write/test.txt w,
— Unnecessary access is _not__granted

Copyright © 2007 Hitachi Software Engineering Co., _

27

l Benefit of path-name change of inode number

* Example /etc/mtab
 SELinux : Label is lost when inode number is changed
— Label is associated with inode
* /etc/mtab
* vi, rpm changes inode
— Solution
* “file type transition” configuration
— Not easy for beginner
* Some userland have to be extended
— Example: rpm ,vi
* AppArmor
— No problem!

28

Copyright © 2007 Hitachi Software Engineering Co., _

l Loss by path-name

* |nformation flow
* tmpfiles

29

l Loss by path-name Information flow analysis

-> Who can access the information?
* Some people say path-name based security is broken

because of this
* Ex: Information flow analysis to password information

— Initial state: Stored in /etc/shadow
— If hardlink is created to /etc/shadow, password information can
be accessed via hardlink
— What happens in information flow analysis?
* Have to traverse whole file tree to find hardlink

* What if more hardlink is created during travarsal ?

— SELinux:

* All you have to do is to check what kind of
domain can access label for /etc/shadow

* Label is the same for hardlink 30

Copyright © 2007 Hitachi Software Engineering Co., L_

l Loss by path-name tmp files

* When creating randomly named file under /tmp

* SELinux

— Can identify such file by naming label such as
httpd _tmp t

* AppArmor
— How to identify randomly named files?
* result in allowing whole /tmp.

31

Copyright © 2007 Hitachi Software Engineering Co._

l SELinux Policy Editor(SEEDIT) (1)

* Tool that makes SELinux easy

* Open Source:
— Originally developed by Hitachi Software
— Included in Fedora repository

* Main feature: SPDL
— AppArmor-like syntax to write policy
— example:
* domain httpd t
* program /usr/sbin/httpd;
* allow /var/lwww/** r; & path-name configuration

— This is converted to SELinux policy syntax
* type var www _t; < label is generated

* allow httpd_t var_www _t { file dir }: read; 3

Copyright © 2007 Hitachi Software Engineering Co., _

http://seedit.sourceforge.net/

l SELinux Policy Editor(SEEDIT) (2)

 Still different from AppArmor

* Inherit drawback from label-based access control
— change of inode
* generated policy is label based
* Inherit good points from SELinux
— fine-grained permission (IPC, network)
— no patch to kernel

* Now, | am porting SPDL to work on embedded device
— | can demo for you after presentation!

— | hope | can release in future (not sure when)
33

Copyright © 2007 Hitachi Software Engineering Co., _

2.2 Porting SELinux/AppArmor
to embedded devices

HitachiSoft
P— %15, B<

l Target device

* Sharp Zaurus SL-C3200
— CPU: Intel XScale 416Mhz
— Memory: 64MB

* Distro: Open Zaurus 3.5.4.2-rc2

* Experiences of porting SELinux and AppArmor

35

Copyright © 2007 Hitachi Software Engineering Co_

l Kernel

* SELinux
— No work is needed! included in mainline
* AppArmor

— Have to obtain patch from
* http://developer.novell.com/wiki/index.php/Novell _ AppArmor

— Very easy to patch

diffstat:

fs/namespace.c | 3
include/linux/audit.h |5
include/linux/namespace.h | 3
kernel/audit.c | 6

All others: security/apparmor
36

Copyright © 2007 Hitachi Software Engineering Co_

l File system

* SELinux:
— File system must support xattr
* ext2, ext3 supports xattr
* after 2.6.18 jffs2 supports xattr
* Fortunately, SL-C3200 uses ext3 ©
* AppArmor:
— No extension needed!

37

Copyright © 2007 Hitachi Software Engineering Co_

l Userland

* SELinux
— Many commands
* load_policy, setfiles, restorecon, chcon etc..
* Might want them to port to BusyBox to reduce size
— libselinux
* APIs for SELinux commands
* AppArmor
— Only apparmor_parser
* Profile loader

* Some helper shell script may needed for
convenience

* cross-compile with minor modification

38

Copyright © 2007 Hitachi Software Engineering Co.,_

l Policy

* SELinux
— Difficult to use sample policy (refpolicy)
* Intended for server use
* Need a lot of customize
* Difficult to understand, describe
— | used SELinux Poilcy Editor's simplified policy(SPDL)
* AppArmor
— Much easier than refpolicy
* Like SPDL
* Policy generation tool
— Not available for both
* python or perl is required

— Have to write by hand.
39

Copyright © 2007 Hitachi Software Engineering Co.,_

2.3 Performance

HitachiSoft
P— %15, B<

l Experiment

* Prepared domain/profile for 7 apps

* Memory usage

* Storage usage

* Unixbench/Imbench

* Compared with no SELinux/AppArmor kernel

41

l Memory usage

* free command

* AppArmor
- +1M
* SELinux
- +1.7M
* Both need work (TODO)

42

l Storage usage

* Total
— SELinux + 757k(no tuning) — +244k(with tuning)
* -> Tuning is important
— AppArmor +157k (tuning not tried yet)

43

l Imbench

Overhead of |Overhead of

AppArmor(%) |SELinux(%)
simple syscall 0.6 0.4
simple read 31.3 74.3
simple write 42.9 98.7
simple stat 30 954.8
simple fstat S 45.9
simple open/close 114.5 44 .8
pipe latency 8.7 12.6
process fork+exit 1.9 2.6
process fork+iacie 17.6 6.8
-C 18.2 18.1

AppArmor: overhead in file open, exec

SELinux: overhead after file open, exec 44

Copyright © 2007 Hitachi Software Engineering Co.,_

l Unixbench

Overhead of

Overhead of

AppArmor(%) | SELinux(%)
DhryStone 2 using
register variables 0 0
Double-Precision
Whetstone 0 0
Execl 15.3 o.7
FileCopy(256buf) 6.4 13.9
1024buf 0.6 8.7
4096buf 0 2.9
Pipe Throuput 5.6 24.6
Pipe-based context
switch 3.9 11.7
Process creation 0 1.4
Shsleacdats 19.3 30.3
overheads 0 0

Copyright © 2007 Hitachi Software Engineering Co., _

Less overhead

than null I/O

— 777

45

3 . SELinux activities in Japan

HitachiSoft
P— %15, B<

l Our project

* Project in Japan SELinux Users Group (JSELUG)
* Qur goal

— Prepare SELinux platform, development kit for embedded
devices

* 2 projects

— seBusyBox(on going), SEDiet(not public yet)
* Developers

— Current active

* Yuichi, KaiGai, Shinji

— Some other people are involved in discussion
* If you are interested in our project:

— busybox atmark kaigai.gr.jp

47

Copyright © 2007 Hitachi Software Engineering Co., _

l seBusyBox

* Porting SELinux commands to BusyBox

* Submitted patch to BusyBox upstream
— Accepted: coreutils, libselinux
— On going: policycoreutils, netstat, find

* We found implicit guidelines of BusyBox
— such as indent rule, usage of libbb
— Japanese site, sorry:
* http://www.kaigai.gr.jp/index.php?busybox_upstream

48

Copyright © 2007 Hitachi Software Engineering Co.,_

l SEDiet

* SEDiet (SELinux Diet):
— Activity to reduce size of SELinux
— Reducing size of policy, userland
— In progress.
* Submitting patch to diet libselinux

— More presentation in near future??

49

Copyright © 2007 Hitachi Software Engineering Co_

l Summary

* SELinux -> more security, less usability
* AppArmor -> less security, more usability

* SELinux needs more work, but community can change it!
— Project in progress
— SELinux Policy Editor can simplify SELinux
— SELinux community is bigger, upstreamed
* More eyeballs, better implementation, more reputation
* Let’s contribute ©

50

Copyright © 2007 Hitachi Software Engineering Co.,_

Questions/Suggestions ?

HitachiSoft
| e TR L 24

Linux is a registered trademark of Linus Torvalds in the US and other countries

Red Hat is a registered trademark of Red Hat ,Inc in the US and other countries
SUSE is a registered trademark of SUSE LINUX AG in the US and other countries
AppArmor is a registered trademark of Novell, Inc in the US and other countries.
TOMOYO is a registered trademark of NTT Data corporation.

Other names of products, services and companies are the trademarks of their respective companies.

51

