
Introducing SoftUpdate to FAT

20060411

Tanaka, Machida – Sony Corp.
Watanabe, Ohtan – AXE Inc.

Terminology
• block – buffer layer

– Logical minimal I/O unit of File system
– It consist of one or more sector

• sector – bio layer
– Physical minimal I/O unit

Scope
• Purpose

– Keep meta data on disk consistent, on suddenly power done
– Offline fsck free

• What’s SoftUpdate
– Utilize write-back-cache, but keep meta data on disk consistent

• Address issues with following order
– expansion and truncate cluster chain (allocation table

operations)
– Dirent operations
– Online fsck – potential double link issue on move/rename
– Other operations?

• This presentation material is based on discussion with
Ogawa-san, FAT maintainer

Alloc. table submission – Example
expansion case #1 (before modification)

n denotes the order of modification

x y x depends on y

d1 d2 d3

block A block B

block C

Disk image

a1 a2 a3

block D

b1 b3b2

c1 c2 c3EOF

Free

Free

Free Free

dirent

Free Free

d1 d2 d3

block A block B

block C

Memory image

a1 a2 a3

block D

b1 b3b2

c1 c2 c3EOF

Free

Free

Free Free

dirent

Free Free

Alloc. table submission – Example
expansion case #1 (mem image)

Extend cluster chain;
from:* dirent – d1
to: * dirent – d1 – a1 – b3 – b1 – a3 – c2 – a2

Order of modification on mem(old val)

– block A[FRE EOF(FRE) FRE]
– block C[??? a2(FRE) ???]
– block A[FRE EOF c2(FRE)]
– block B[a3(FRE) ??? b1(FRE)]
– block A[b3(FRE) EOF c2]
– block D[a1(EOF) ??? ???]

– Multiple modifications on same sector can be handled
at one time

– On rollback, fat entry will be set to EOF. Not need to
record whole modification history as transaction.

block A block B

6 3
1

4 5

2
block C

n denotes the order of modification

x y x depends on y

Memory image

dirent

7

a1 a2 a3

d1

block D

b1 b3b2

d2 d3
c1 c2 c3

EOF

block B is being written;
The entry b1(content is a3) is depend on block A.
If block A is dirty, block B needs rollback.

Assume no sect is clean (not dirty)

- Rollback before I/O submission
– block B[a3 ??? b1]
->
– block B[EOF ??? b1]

- I/O submission;
– block B[EOF ??? b1]

- Roll forward on callback of I/O completion
– block B[EOF ??? b1]
->
– block B[a3 ??? b1]
– mark block B dirty again

Alloc. table submission – Example
expansion case #1 (block B submission)

n denotes the order of modification

x y x depends on y

block A block B

6 31 4 5

2
block C

Memory image

7

a1 a2 a3

d1

block D

b1 b3b2

d2 d3
c1 c2 c3

dirent

Alloc. table submission – Example
expansion case #1 (Disc Image)

block A block B

6 31 4 5

2
block C

n denotes the order of modification

Memory image

7

a1 a2 a3

d1

block D

b1 b3b2

d2 d3
c1 c2 c3

block A block B

EOF b1

block C

Disk image

a1 a2 a3

block D

b1 b3b2

c1 c2 c3EOF

Free

Free

Free Free

dirent dirent

d1 d2 d3

EOFb3 c2

a1

a2

b1a3

Basic design
• Basic rule

– On writing block B,
• If target(a3) is dirty (not yet

written to disk), then
– Roll back entry of dependency

in block B
– Write block B
– Roll forward it

• Else (clean)
– Write block B

• How express “unresolved
dependency”(UD) and maintain it
– Dirty

• On modifying FAT entry on mem,
allocate corresponding UD
structure.

• After writing FAT entry to disk.
Release corresponding UD
structure.

– Clean
• There is no data instance

block A block B

6 31 4 5

2
block C

Memory image

7

a1 a2 a3

d1

block D

b1 b3b2

d2 d3
c1 c2 c3

dirent

X depends on Y;
call X as “target” Y as “dependency” just like in Makefile

target
dependency

Unresolved dependency: b1 depends on a3

Algorithm
• On FAT manipulation between different blocks,

add an UD “unresolved dependency” structure
– Alloc “unresolved dependency” if different blocks

• target = b1
• dependency = a3

• On Submit BH
– acquire mutex lock
– For each UD struct where the target of submitting

BH is target
• // Assert (target block is dirty)
• save = *(target)

– Save = *(b1)
– Save = a3

• * (dependency) = FOF // roll back
– *b1 = EOF

– release mutex lock
– continue conventional submitting BH

• After BH I/O completion
– acquire mutex lock
– For each UD struct where the target of BH I/O is

target
• * (target) = save // roll forward

– *b1 = a3
• Mark dirty again

– Mark block B dirty
– For each UD struct where the target of BH I/O is

dependency
• Release the struct

– Remove UID struct stands for [a1]->[b3] dependency
– release mutex lock
– continue conventional BH I/O completion

block A block B

6 31 4 5

2

block C

Memory image

7

a1 a2 a3

d1

block D

b1 b3b2

d2 d3

c1 c2 c3

dirent

targetUD
Structs
a3 b1

dependency

b3a1

c2a3

a2 c2

a1 d1

target dependency

Impetration issues
• How implement to UD

– Do not extend Buffer_header
– b_private in BH could be used

• BH_* Bit fields for private reserved also may
help

• own modified end_io would be used
• E.g. jbd replace b_end_io with own method

– Need to proper operation to bh refconut
– Data structure for target of UD

• offset inside in the block
– block size can be looked up by super block

• Save area for rollback (max 32bit)
– Data structure for dependency of UID

• *BH (pointer of Buffer Head)

• Efficiency
– resolution of multe lock
– Is a good enough that dependency and

target liked to block through by bi-
directional liner link

• Others
– Can we control order of output with HW

sector, not block with FS layer?
• No maybe.
• FS handles data with block size.

block A block B

6 31 4 5

2

block C

Memory image

7

a1 a2 a3

d1

block D

b1 b3b2

d2 d3

c1 c2 c3

dirent

UID
Structs
a3 b1

b3a1

c2a3

target dependency target dependency

Alloc. table submission – Example
truncate case #1 (before modification)

n denotes the order of modification

x y x depends on y

sect A sect B

sect C

Memory image

a1 a2 a3

d1

sect D

b1 b3b2

d2 d3
c1 c2 c3

dirent

a3 b1

a2

a1

EOFb3 c2

sect A sect B

sect C

Disk image

a1 a2 a3

d1

sect D

b1 b3b2

d2 d3
c1 c2 c3

dirent

a3 b1

a2

a1

EOFb3 c2

Alloc. table submission – Example
truncate case #1 (mem image)

n denotes the order of modification

x y x depends on y

sect A sect B

sect C

Memory image

a1 a2 a3

d1

sect D

b1 b3b2

d2 d3
c1 c2 c3

dirent

a3 b1

EOF

EOFb3 c2

1

2 57 4 3

6

shurink cluster chain;
from:* dirent – d1 – a1 – b3 – b1 – a3 – c2 – a2
to: * dirent – d1

On mem modification (old val)

– sect D[EOF(a1) ??? ???]
– sect A[FRE(b3) EOF c2]
– sect B[FRE(a3) ??? FRE(b1)]
– sect A[FRE EOF FRE(c2)]
– sect C[??? FRE(a2) ???]
– sect A[FRE FRE(EOF) FRE]

– Multiple modifications on same sector can be handled
at one time

– On rollback, fat entry will be set to EOF. Not need to
record whole modification history as transaction.

Alloc. table submission – Example
truncate case #1 (block A submission)

n denotes the order of modification

x y x depends on y

sect A sect B

sect C

Memory image

a1 a2 a3

d1

sect D

b1 b3b2

d2 d3
c1 c2 c3

dirent

a3 b1

EOF

EOFb3 c2

1

2 57 4 3

6

block A is being written;
The entry a1, a2 and a3 are depend on block D,

C and B respectively.
If block D is dirty, rollback a1 is needed.
Same for (C, a2) and (B, a3).

Assumed block D is clean (not dirty)

- Rollback before I/O submission
– blockA[FRE FRE FRE]
->
– BlockA[FRE EOF EOF]

- I/O submission;
– blockA[FRE EOF EOF]

- Roll forward on callback of I/O completion
– blockA[FRE EOF EOF]
->
– blockA[FRE FRE FRE]
– mark block A dirty again

Alloc. table submission – Example
truncate case #1 (Disk image)

n denotes the order of modification

sect A sect B

sect C

Disk image

a1 a2 a3

d1

sect D

b1 b3b2

d2 d3
c1 c2 c3

dirent

a3 b1

EOF

EOFb3 c22 57 4 3

6

sect A sect B

sect C

Memory image

a1 a2 a3

d1

sect D

b1 b3b2

d2 d3
c1 c2 c3

dirent

FRE FRE

FRE

EOF

FREFRE FRE a3 b1EOFFRE EOF

a2

Dirent operations – size (1)
• Add new data on a file

– Alloc and add cluster chain with the above manner
– Write data body(s) on memory as async way (same as nomarl write())
– Update size on Dirent

• On update Dirent
– allocate size-dependency structure

» original size value
» * inode

• On submitting Dirent,
– // If all cluster chain entries and data body is not yet written out
– For each size-dependency struct, traverse cluster chain,
– for each cluster entry

» check there’re no UID where dependency is same as cluster entry
» and
» check dirty flag of corresponding data blocks are clean

» Roll back size field
» Write
» Roll forward size field

– Else
» write
» release size-dependency structure

Dirent operations – size (2)
• Truncate file to shrink down

– Update size on Dirent
• Issue dirent I/O, just after after updating size field

– Shrink cluster chain

