Introducing SoftUpdate to FAT

20060411

Tanaka, Machida — Sony Corp.
Watanabe, Ohtan — AXE Inc.



Terminology

* block — buffer layer
— Logical minimal I/O unit of File system
— It consist of one or more sector

e sector — bio layer
— Physical minimal 1/O unit



Scope

Purpose
— Keep meta data on disk consistent, on suddenly power done
— Offline fsck free

What's SoftUpdate
— Utilize write-back-cache, but keep meta data on disk consistent

Address issues with following order

— expansion and truncate cluster chain (allocation table
operations)

— Dirent operations
— Online fsck — potential double link issue on move/rename
— Other operations?

This presentation material is based on discussion with
Ogawa-san, FAT maintainer




expansion case #1 (before modification)

Alloc. table submission — Example

Memory image

dirent
al a2 a3 bl b2 b3
Free | Free | Free Free Free
block A block B
b!O k Free
block C
= cl c2 c3
dl d2 d3

@ denotes the order of modification

X — Yy

X depends ony

Disk image
dirent
al a2 a3 bl b3

Free Free Free Free Free

block A block B
block Froo

block C
= cl c2 c3
dl d2 d3




Alloc. table submission — Example
expansion case #1 (mem image)

Memory image Extend cluster chain;
from:* dirent — d1
to: *dirent—-dl-al-b3-bl-a3-c2-a2

dirent
a1l a2 a3 bl b2 b3 Orderof modification on mem(old val)
Oy I}
— block A[FRE EOF(FRE)  FRE]
(® Eo,z 3 <4> 5 _ block C[??? a2(FRE)  227]
— block A[FRE EOF c2(FRE)]
block A \ blockl B — block B[a3(FRE) ??? b1(FRE)]
— block A[b3(FRE) EOF c2]
v — block D[al(EOF) ??7? ??7]
block \@
(5/ block C
S
il 42 d3 cl c2 c3 — Multiple modifications on same sector can be handled
1 at one time

— Onrollback, fat entry will be set to EOF. Not need to

o record whole modification history as transaction.
@ denotes the order of modification

X =—y X depends ony




Alloc. table submission — Example
expansion case #1 (block B submission)

Memory image block B is being written;
The entry b1(content is a3) is depend on block A.
If block A is dirty, block B needs rollback.

dirent . :
Assume no sect is clean (not dirty)
al|l a2 a3
@ () - Rollback before 1/0O submission
@2 3 — block B[a3 222 bil]
->
bloc{ A \ — block B[EOF ??7? bl]
¥ - 1/0O submission;
block 2 — block B[EOF ??7? bl]
/ block C :
7 - Roll forward on callback of 1/0 completion
cl c2 «c3 — block B[EOF 22?7  bi]
dl d2 d3 _>
— block B[a3 27?7 bl]

@ denotes the order of modification _ mark block B dirty again

X =—y X depends ony



Alloc. table submission — Example
expansion case #1 (Disc Image)

Memory image Disk image
dirent
all a2z a3 al a2 a3
b3 EOF c2 Free | Free | Free
.\
bloci A \ block A
N\
block a2 block —
|/ black C block C
= cl ¢2 c3 =0 cl ¢2 c3
dl d2 d3 dl d2 d3

@ denotes the order of modification



Basic design

e Basic rule

— On writing block B,
» If target(al) is dirty (not yet
written to disk), then
— Roll back entry of dependency

Memory image

di in block B
Irent — Write block B
— Roll forward it
al | a2 bl] b2 [b3 « Else (clean)
— Write block B
® @2 4 5
* How express “unresolved
bloci A block B dependency”(UD) and maintain it
— Dirty
block « On modifying FAT entry on mem,
(\)/ bjock C allocate corresponding UD
7 structure.
cl 2 C ~ .
» After writing FAT entry to disk.
dl d2 d3 target Release corresponding UD
structure.
dependency _ Clean
Unresolved dependency: bl depends on a3 « There is no data instance

X depends onY;
call X as “target” Y as “dependency” just like in Makefile




Memory image

dirent
al a2 a3
jol]
blocfl A \Ll
/ bidck
block C
7
cl c2 c3
dl d2 d3

A 4

| target }dependen c;{

y

A

v

Algorithm

UD | target Pependency

Structs

a3|bl

azlc2[

alldl[

A

al|b3

a3

c2

On FAT manipulation between different blocks,
add an UD “unresolved dependency” structure

— Alloc “unresolved dependency” if different blocks
e target=Dbl
e dependency = a3

On Submit BH

— acquire mutex lock
— For each UD struct where the target of submitting
BH is target
» /[ Assert (target block is dirty)
e save = *(target)
— Save =*(bl)
— Save=a3
e *(dependency) = FOF // roll back
—  *bl=EOF
— release mutex lock
— continue conventional submitting BH

After BH I/O completion
— acquire mutex lock
— For each UD struct where the target of BH I/O is
target
e *(target) = save // roll forward
- *hl1=a3
* Mark dirty again
— Mark block B dirty
— For each UD struct where the target of BH 1/O is
dependency
* Release the struct
— Remove UID struct stands for [al]->[b3] dependency
— release mutex lock

— continue conventional BH 1/0 completion



Memory image

dirent

Impetration issues

How implement to UD
Do not extend Buffer_header
b_private in BH could be used

al a2

blocfl A

(75/ bld

dl d2 (@d3

\ 4
| target }jependenc;{

UiD
Structs

a3

bl

a3

c2

al

b3

| target Fependen cy{
A

EI—:_* Bit fields for private reserved also may
elp

own modified end_io would be used

E.g. jbd replace b_end_io with own method

Need to proper operation to bh refconut
Data structure for target of UD

offset inside in the block
— block size can be looked up by super block

Save area for rollback (max 32bit)

Data structure for dependency of UID

*BH (pointer of Buffer Head)

Efficiency
resolution of multe lock

Is a good enough that dependency and
target liked to block through by bi-
directional liner link

Others

Can we control order of output with HW
sector, not block with FS layer?

No maybe.
FS handles data with block size.



Alloc. table submission — Example
truncate case #1 (before modification)

Memory image Disk image
dirent dirent
all a2 a3 bl b2 b3 all a2 a3 bl b2 |b3
b3 EOF c2 a3 b‘1( b3 EOF c2 a3 bl
sect/A \ sect B sect/A \ sect B
N+ N+
seectD 2 seectD 2
sect C sect C
= cl c2 c3 = cl c2 c3
dl d2 d3 dl d2 d3

@ denotes the order of modification

X =—y X depends ony



Alloc. table submission — Example
truncate case #1 (mem image)

Memory image shurink cluster chain;
from:* dirent—dl-al-b3-bl-a3-c2-a2
arneneneran s : to: *dirent-dl

alé a2 a3§ blE b2 b3 On mem modification (old val)

06| (@ @ mmumemm

: T : : — sect B[FRE(a3) ???  FRE(bL)]
sect’A :  sectB — sect A[FRE EOF FRE(c2)]
: — sect C[??? FRE(a2) ?222]
; W | e — sect A[FRE FRE(EOF) FRE]
< —sectD @
’ sect C
EOF 1 2 3
€ ¢l ¢ ¢ — Multiple modifications on same sector can be handled
éi)dZ d3 at one time

— Onrollback, fat entry will be set to EOF. Not need to

. record whole modification history as transaction.
@ denotes the order of modification

X =—y X depends ony



Alloc. table submission — Example
truncate case #1 (block A submission)

Memory image block A is being written;

The entry al, a2 and a3 are depend on block D,
C and B respectively.

If block D is dirty, rollback al is needed.
Same for (C, a2) and (B, a3).
Assumed block D is clean (not dirty)

- Rollback before 1/0O submission

— blockA[FRE FRE FRE]

->
— BlockA[FRE EOF EOF]

- 1/O submission;
T cl c2 c3 — blockA[FRE EOF EOF]
d/d2 d3 - Roll forward on callback of 1/0 completion

— blockA[FRE EOF EOF]

@ denotes the order of modification >
— blockA[FRE FRE FRE]

X —— Yy X depends ony
— mark block A dirty again



Alloc. table submission — Example

truncate case #1 (Disk image)

Memory image

dirent

al a2 a3 bl b2 b3

sect A sect B

sect D FRE
sect C
EOF
cl c2 c3
dl d2 d3

@ denotes the order of modification

Disk image

bl b2 b3
a3 bl
sect A sect|B
N\
sectbD -
sect C
EOF
cl c2 c3
dl d2 d3



Dirent operations — size (1)

 Add new data on a file
— Alloc and add cluster chain with the above manner
— Write data body(s) on memory as async way (same as nomarl write())

— Update size on Dirent

e On update Dirent
— allocate size-dependency structure

»

»

original size value
* inode

e On submitting Dirent,
— /I'If all cluster chain entries and data body is not yet written out
— For each size-dependency struct, traverse cluster chain,
— for each cluster entry

»
»
»

»
»
»
— Else
»
»

check there’re no UID where dependency is same as cluster entry
and
check dirty flag of corresponding data blocks are clean

Roll back size field
Write
Roll forward size field

write
release size-dependency structure



Dirent operations — size (2)

 Truncate file to shrink down

— Update size on Dirent
 |ssue dirent I/O, just after after updating size field

— Shrink cluster chain



