
Confidential

Working Together to
Build a Modular
CI Ecosystem

Tim Bird

Fuego Test System Maintainer

Sr. Staff Software Engineer, Sony Electronics
1

Confidential

Outline

• Introduction

• Issues

• Proposals

Confidential

Standards...

Source: https://xkcd.com/927/ License: see https://xkcd.com/license.html

Confidential

Reason for Open Source CI standards

• Many test framework systems are monolithic
• Or at least tied closely to specific sub-components

• e.g. Jenkins, ttc, LAVA, Beaker, buildbot, labgrid, etc.

• Want to mix and match components

• Want an ecosystem of modular CI components

• Allow for collaboration and specialization

• Reduce work!

Confidential

A software stack

Confidential

Need similar APIs

Confidential

Need similar APIs

Confidential

Need similar APIs

Confidential

Confidential

Key issues

• Module boundaries

• Nature of the APIs

• Language

• How to share and re-use code?
• Install-time issues (how to access, where to install)

• Sharing configuration data

• Discoverability

• How to share data?
• Common place to share objects?

• Common formats?

Confidential

Major modules and repositories

Modules
• Test manager

• Job definition front-end

• Job manager front-end

• Test scheduler

• Board manager

• Lab equipment manager

• Notification generator

• Report generator

• Results visualization front-end

Servers/Repositories
• Test definition repository

• Build artifact server
• SUT image repository

• Test binary package repository

• Job request server

• Results artifact server

• Results database

Confidential

Smaller modules or pieces

• bisection tool

• testlog output parser

• provisioning system

• serial port manager

• power control manager

• expect tool

Confidential

High level

• Need way to incorporate other system's pieces (modules)
into our frameworks
• Need to define modules

• Definition:
• Responsibilities

• Interface (module APIs)

Confidential

Accessing modules from other
frameworks

• How?
• Do we have to install multiple frameworks?

• If I want to use CKI triggers, LAVA provisioning, Labgrid lab
management, Fuego tests, and LKFT reporting, how would this work?

• Do we need to split out modules as separate components?
• Does this make things harder for our own users?

• Can we import modules from other frameworks’ git repositories, for
our framework’s users?

Confidential

API options

• <language X> library (LIB)
• C, python, go, Haskell, java, ruby, etc.

• Linux command line (CLI)

• Linux IPC (IPC)

• Network API (NET)

Confidential

CLI-style proposal

• git-style interfaces: <toolname> <verb> <args>
• Using standardized operation verbs and args

• Result data output in JSON
• With exceptions (not json) for single-value or bulk data

• For async operations:
• Use start/stop/collect verbs

• With data going to a file

• Question:
• Input as environment variables, command line args, or JSON?

Confidential

CLI-style rationale

• Can easily wrapper LIB, IPC or NET interfaces with CLI

• Operations are not time-critical
• Overhead of CLI invocation is small compared to duration of

operations

• Many systems already have an existing CLI
• But args are not standardized

• To support common verbs and args, can extend existing tool or create
thin wrapper

Confidential

CLI proposal details:

• Filesystem discoverability:
• /usr/lib/testing prefix

• Propose a "<module>.d" interface, with a <name>-<module>
program name
• Could end in nothing, or standard executable extension (.sh, .py)

• Examples:
• ttc-power-control, pdud-power-control

• grabserial-access-serial

• lava-provision, r4d-provision

• kcidb-results, kernelci-results, squad-results

Confidential

How to get from here to there

• Take existing systems, without breaking them

• Good presentation at LinuxCon Japan (keynote)
• Monolithic monster

• Can’t break system while refactoring it
• Need to break system apart slowly

• Take a little piece at a time

• Ability to use a feature from a test framework without
importing the whole system

Confidential

Chicken and egg problem

• No incentive for framework author to change until benefits are
available
• e.g. not worth creating a board management API if no systems use it

• and not worth changing test system to use a generic board
management API until multiple systems provide it

• Someone has to go first
• Actually, multiple people have to do one side of a layer for there to be

benefits
• Is this true – are the other benefits from modularity?

• Danger of locking in a bad interface

Confidential

Pieces that could be isolated

• Results parser

• Smart diff (for easier expected value)
• seddiff

• Expect (tcl-less)
• for program control, firmware control

• Small footprint, simplified

• bisect tool

• aggressive rmdir (see Dmitry email)

Confidential

Place to share objects

• Project neutral site for collecting/disseminating objects

• or...

• Agreement to consolidate tests in one repository

• Possible uses:
• Peer-to-peer test sharing

• Eliminate gatekeeping for collaboration in testing community

• Allow customization and enhancement of ad-hoc tests
• For diagnosing problems

• Apply tests to board that have hardware needed for test
• Give access to developer who does not have hardware

Confidential

Conclusions

• Fragmentation makes it difficult to collaborate

• Need to identify modules, and boundaries between modules

• Start working on creating modules
• Create internal APIs, data structures and protocols

• Without changing functionality

• Need to decide common IPC

• Proposal:
• Data format=json

• Schema= <to be determined per object>

• IPC=Linux command line

• Propose to use KernelCI for shared repositories

Confidential

Thanks

Tim Bird

Fuego Test System Maintainer

Sr. Staff Software Engineer, Sony Electronics
24

