Working Together to
Build a Modular

Cl Ecosystem

Tim Bird
Fuego Test System Maintainer
Sr. Staff Software Engineer, Sony Electronics

))) Outline
Fuego

® Introduction
® |ssues
®* Proposals

N) Standards...

HOW STANDARDS PROUFERATE:
(62 AC CHARGERS, (HARACIER ENCODINGS, INSTANT MESSAGING, ETC)

Fuego

SITUATION:

THERE ARE
|4 COMPETING
STANDPRDS.

47! RiDICULOUS!

WE NEED To DEVELOP
ONE UNNERSAL STANDARD
THAT COVERS EVERYONE S
USE CASES. YERH!

[SOON: |

SITUATION:

THERE ARE
|5 COMPETING
STANDPRDS.

Source: https://xkcd.com/927/

License: see https://xkcd.com/license.html

$))
Fuego

®* Many test framework systems are monolithic

* Or at least tied closely to specific sub-components
* e.g. Jenkins, tic, LAVA, Beaker, buildbot, labgrid, etc.

Want to mix and match components

Want an ecosystem of modular Cl components
Allow for collaboration and specialization
Reduce work!

Reason for Open Source Cl standards

b A software stack
uego

LinuxDA Application
Program Interfaces

Software Development Tools

Empower Technologies Inc LinuxDA Embedded OS TIDSP/BIOS™

Texas Instruments OMAP

b Need similar APIs
uego

l) Need similar APls
Fuego

ailio

MGES
=,

Review =3 Build ——————————D e |0y

Build | Test Management
- build kernel, DTB, ramdisk
B . |- build distro images E ;-
c— - build test software 3
Test Definitions kD
- test source
Code Review - dependencies
(github, gerrit, etc) - run instructions
Q.
O = g
— A Build Artifacts
@ - Build logs
> - kernel, ramdisk, rootfs
Q - distro images
ﬂ Test images
Source Code | |
Repos
N Run Artifacts
- Boot logs
- Test logs
- Monitor logs
M.— . - Test artifacts
o
b~ Backend
o Frontend R - Results Database, F
Q. (Web UI) P » - Report Generation, < L
Q - Notifications
o /-Q-"'_'—" - Analytics
CLI tools

Lab / Board Farm

Test Scheduler
- scheduling

- resource allocation
- dependency checking

F 3
E

DUT Control

<

Control Host

Console | ‘F‘DWEI’

Devices Under
Test

Network | ‘L{:gging

!

(Power Measurement,

@"\. External Equipment
J

Analyzers)

Interact ¢ Analyze

Results

(MH)

d

$2)
Fuego

Module boundaries

Nature of the APls

Language

How to share and re-use code?

* Install-time issues (how to access, where to install)
* Sharing configuration data

* Discoverability

® How to share data?

* Common place to share objects?
* Common formats?

Key issues

)
Fuego

Modules

Test manager
* Job definition front-end
* Job manager front-end

Test scheduler

Board manager

Lab equipment manager
Notification generator

Report generator

Results visualization front-end

Major modules and repositories

Servers/Repositories

Test definition repository

Build artifact server

* SUT image repository

* Test binary package repository
Job request server

Results artifact server

Results database

$2)

Fuego

bisection tool

testlog output parser
provisioning system
serial port manager
power control manager
expect tool

Smaller modules or pieces

$))
Fuego

® Need way to incorporate other system's pieces (modules)
into our frameworks

* Need to define modules
® Definition:

* Responsibilities

* Interface (module APIs)

High level

$) » Accessing modules from other
(¢ frameworks
Fuego

® How?
* Do we have to install multiple frameworks?

* If | want to use CKI triggers, LAVA provisioning, Labgrid lab
management, Fuego tests, and LKFT reporting, how would this work?

°* Do we need to split out modules as separate components?
* Does this make things harder for our own users?

* Can we import modules from other frameworks’ git repositories, for
our framework’s users?

.) API options
Fuego

® <language X> library (LIB)

* C, python, go, Haskell, java, ruby, etc.
® Linux command line (CLI)
* Linux IPC (IPC)

* Network APl (NET)

$))
Fuego

® git-style interfaces: <toolname> <verb> <args>
* Using standardized operation verbs and args
® Result data output in JSON
* With exceptions (not json) for single-value or bulk data
® For async operations:
* Use start/stop/collect verbs
* With data going to a file
® Question:
* Input as environment variables, command line args, or JSON?

CLI-style proposal

$))
Fuego

® Can easily wrapper LIB, IPC or NET interfaces with CLI

®* Operations are not time-critical

* Overhead of CLI invocation is small compared to duration of
operations

®* Many systems already have an existing CLI

* But args are not standardized

* To support common verbs and args, can extend existing tool or create
thin wrapper

CLl-style rationale

$)\
Fuego

® Filesystem discoverability:
* Jusr/lib/testing prefix

* Propose a "<module>.d" interface, with a <name>-<module>
program name

* Could end in nothing, or standard executable extension (.sh, .py)
* Examples:

« ttc-power-control, pdud-power-control

e grabserial-access-serial

* lava-provision, r4d-provision

« kcidb-results, kernelci-results, squad-results

CLI proposal details:

$2)

. - How to get from here to there
Fuego

® Take existing systems, without breaking them
® Good presentation at LinuxCon Japan (keynote)
* Monolithic monster

* Can’t break system while refactoring it
* Need to break system apart slowly
* Take a little piece at a time

® Ability to use a feature from a test framework without
importing the whole system

)\
Fuego

® No incentive for framework author to change until benefits are
available

* e.g. not worth creating a board management API if no systems use it

* and not worth changing test system to use a generic board
management API| until multiple systems provide it

® Someone has to go first

* Actually, multiple people have to do one side of a layer for there to be
benefits

* Is this true — are the other benefits from modularity?
®* Danger of locking in a bad interface

Chicken and egg problem

$)\
Fuego

® Results parser

®* Smart diff (for easier expected value)
° seddiff

®* Expect (tcl-less)
* for program control, firmware control
* Small footprint, simplified

® bisect tool

® aggressive rmdir (see Dmitry email)

Pieces that could be isolated

)
Fuego

Project neutral site for collecting/disseminating objects

or...
Agreement to consolidate tests in one repository

Possible uses:
* Peer-to-peer test sharing
* Eliminate gatekeeping for collaboration in testing community
* Allow customization and enhancement of ad-hoc tests
* For diagnosing problems

* Apply tests to board that have hardware needed for test
* Give access to developer who does not have hardware

Place to share objects

)\
Fuego

®* Fragmentation makes it difficult to collaborate
®* Need to identify modules, and boundaries between modules

® Start working on creating modules
* Create internal APIs, data structures and protocols
* Without changing functionality

® Need to decide common IPC

® Proposal:
* Data format=json
* Schema= <to be determined per object>
* IPC=Linux command line

®* Propose to use KernelCl for shared repositories

Conclusions

Tim Bird
Fuego Test System Maintainer

Sr. Staff Software Engineer, Sony Electronics
24

