
Dynamic Co-simulation of FPGA-
based Linux Systems-on-Chip

<john.williams@petalogix.com>

<peter.crosthwaite@petalogix.com>
PetaLogix Labs



12 April 2011 PetaLogix/Williams ELC 2011 2

What?!

● Dynamic
● Data-driven simulation models

● Co-simulation
● Gluing multiple simulation frameworks together

● FPGA-based Linux SoC
● Using FPGAs to create custom SoC architectures, 

and running Linux on them



12 April 2011 PetaLogix/Williams ELC 2011 3

Why?

● Linux
● <insert your own answer here>

● FPGA-based SoC
● designer SoC, with workstation tools

– No Fab required

● Simulation
● Increasingly necessary and popular approach

– Test against platforms that don't yet exist

– Prototype HW too rare to share among SW development teams

– Allow behavioural visibility beyond that possible in real HW

● e.g. Android DK (QEMU-based)



12 April 2011 PetaLogix/Williams ELC 2011 4

The story so far

● ELC 2009
● Embedded Linux on FPGAs for fun and profit

● ELC 2010
● Custom Hardware Modelling for FPGAs and Embedded Linux 

Platforms with QEMU

● Videos of these talks available thanks to Free Electrons
● http://free­electrons.com/blog/elc­2009­videos/

● http://free­electrons.com/blog/elc­2010­videos/



12 April 2011 PetaLogix/Williams ELC 2011 5

Dynamic QEMU platforms

● To date, all QEMU machine models are static
● qemu/hw/...

– #define ADDRESS_OF_MY_DEVICE 0xdeadbeef

● etc

● Plenty of kernel machine models are static too
● linux-2.6.x/arch/arm/mach-foo/..

– #define ADDRESS_OF_MY_DEVICE 0xdeadbeef

● MicroBlaze, PowerPC and a few others get this right
– ARM is coming eventually, we hope



12 April 2011 PetaLogix/Williams ELC 2011 6

Dynamic QEMU platforms

● Device Trees are an increasingly popular 
representation of the machine model
● Permits completely generic kernel platform code, all data-

driven

● Way back in 2009, we wondered
● Since our kernel is DT driven, can we just assemble 

QEMU machines on the fly from the same data structure?

● The answer is a resounding “yes”
● Implementations for MicroBlaze and PPC440

– ARM Cortex A9 (Zync) platform coming



12 April 2011 PetaLogix/Williams ELC 2011 7

Dynamic QEMU platforms

● system.dtb is (but needn't be) exactly the 
same binary blob that will configure the kernel 
when it boots
● in the VM, or
● on the real board

$ qemu­system­microblaze \

­M microblaze­fdt ­hw­dtb system.dtb \

­kernel vmlinux



12 April 2011 PetaLogix/Williams ELC 2011 8

So this is cool, what's next?

● Developers of FPGA-based SOCs typically 
assemble a mix of standard and custom IP

● Standard stuff
● CPU, busses, interrupt controllers, timers, etc

● Custom stuff
● Anything they want!
● Custom IO, data processors



12 April 2011 PetaLogix/Williams ELC 2011 9

Test what you fly, fly what you test

● There's not much point only simulating the bits 
that you already know work

● We want to be able to develop complete driver 
and SW stacks against simulation models
● Rapid feedback on IP/driver interactions
● Simple architecture modelling



12 April 2011 PetaLogix/Williams ELC 2011 10

Test what you fly, fly what you test

● It is quite possible to create new QEMU device models 
for arbitrary custom 'stuff', but...
● It's not easy (fairly complex device model, esp. for 

asynchronous behaviours)
● you have to hack on QEMU (Makefiles, source code, …)

● We may want a range of models for the same device
● Fast, low fidelity – good for quick driver/device prototyping
● Slow, high fidelity – detailed low-level view of device 

behaviour



12 April 2011 PetaLogix/Williams ELC 2011 11

External device models

● Is there a way we could wrap the QEMU device 
model API into some simplified abstraction?
● Yes!

● Communicate to external device models over
● sockets
● pipes

● Need support for
● slave transactions
● master transactions
● IRQs and other asynchronous events



12 April 2011 PetaLogix/Williams ELC 2011 12

External device models

● Build upon the 'rbus' (remote bus) API from 
Edgar Iglesias
● In essence, a way of serialising bus transactions into 

a generic packet format

● To QEMU, we added
● Standard handling for transport (pipes/sockets etc)
● A generic rbus stub device that is the bridge 

between QEMU and the outside world
● Dynamic binding mechanism

– Device Trees still rule the world



12 April 2011 PetaLogix/Williams ELC 2011 13

External device models

● One 'rdev' device for each remote device

QEMU

Dev 1

Dev 2

Dev 3Mem

CPU

Dev 3Dev 3Dev 3rdev fd

device model

rbus_generic



12 April 2011 PetaLogix/Williams ELC 2011 14

External model spawning

● Added ability for QEMU to spawn child processes for 
each remote device

● QEMU will spawn one instance of the remote device 
model, for each instance found in the system Device 
Tree

$ qemu­system­microblaze \

­M microblaze­fdt ­hw­dtb system.dtb \

­kernel vmlinux \

­rbus­spawn /path/to/devmodel­exe \

­rbus­spawn /path/to/devmodel2­exe



12 April 2011 PetaLogix/Williams ELC 2011 15

External model binding

● How to bind an external model to a particular 
'personality'?
● In the startup handshake, device models declare 

their compatibility
● QEMU remote device handling binds based on this

● In this model, all devices of a particular type, 
will bind to the same remote model
● It is also possible to specify bindings on a per-

instance basis



12 April 2011 PetaLogix/Williams ELC 2011 16

“Hello, device model world”

• Peripheral has a single register @ offset 0x0
• The register is both readable and writeable

• 32 bit bus architecture
• Byte/halfword ops forbidden

• Updating the register changes the state of 
attached LEDs
• Simple text output to simulation console



12 April 2011 PetaLogix/Williams ELC 2011 17

uint32_t reg;

int gpio_leds_slave_read(uint32_t addr, uint8_t byte_en, uint32_t * ret) 
{

*ret = reg;
return 0;

}

int gpio_leds_slave_write(uint32_t addr, uint32_t data, uint8_t byte_en) 
{
    reg = data;
    dump_leds_state_to_terminal();
    return 0;
}

Read/Write Transaction Handlers

The single register

Return reg on a 
read operation

Update reg on a 
write operation

Tell the user that 
the LEDs are now 
different



12 April 2011 PetaLogix/Williams ELC 2011 18

Defining the device
struct rdev_addr_range addr_ranges [] = {
    {.offset = 0x0, .length = 0x4},
    {.end_of_list = 1}
};

char compats[] = "xlnx,xps­gpio­2.00.a";

const struct rdev_env gpio_leds_env = {

    .slave_read_ranges = addr_ranges,
    .slave_write_ranges = addr_ranges,

    .slave_read = gpio_leds_slave_read,
    .slave_write = gpio_leds_slave_write,

    .slave_read_restricts = RDEV_AR_ALIGN_WORD |
RDEV_AR_32_BIT | RDEV_AR_WORD_ONLY,

    .slave_write_restricts = RDEV_AR_ALIGN_WORD |
RDEV_AR_32_BIT | RDEV_AR_WORD_ONLY

};

int main (...) {
rdev_bind(NULL, compats, NULL);
rdev_start(&gpio_leds_env);

}

Valid Address Range
(Single Register @ 0)

Register our handlers

Define bus width and 
enforce word alignment 
with no byte/halfword 
access

Start event loop



12 April 2011 PetaLogix/Williams ELC 2011 19

Runtime

PetaLinux Root Console GPIO_LEDS Device Console

● QEMU binds the device model when 
compatible FDT node is found

● Kernel initialises the device
● User pokes device directly to change LEDs



12 April 2011 PetaLogix/Williams ELC 2011 20

Other interesting things

● Added ability for QEMU to load device models 
from .so libraries
● Use full QEMU device model, but dynamically 

linked
● Requires special device model Makefiles, and ties 

device models to a particular QEMU API version

● Prototyped ability to simulate device models in 
ISIM
● Some interesting questions about time



12 April 2011 PetaLogix/Williams ELC 2011 21

Q&A


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

