' 4

BIS-LINUX.COM i Ta
' P A L — ;

ELCE 2012 1
Real-Time Linux in Industrial Appliances

Martin Bis

http://bis-linux.com
martin@bis-linux.com

November 2012

Martin Bis ELCE 2012 Real-Time Linux in Industrial Appliances

e Martin Bis e Industrial appliances (Linux +
e GNU/Linux (from Real-Time)
administration to kernel

programming) valllu::El‘(
e Embedded Linux)

@ Trainings, consulting, support
(http://bis-1linux.com)

http://bis-linux.com

ming usage of Linux in embedded environments

@ Linux (and Open Source) is being increasingly used in
industrial control devices (previously reserved for classic
RTOSes).

e Hardware capable of running Linux become cheaper.

e Linux supports lots of hardware, as well as communication
protocols.

e Security is easy to achieve (security != safety critical)

o Code is easy to develop and reusable.

@ More and more such applications must work in Real-Time.

ical case

Weight dosing in injection-molding process (plastics industry).
Application based on TNKernel.
@ http://www.tnkernel.com/
@ compact and very fast real-time kernel for the embedded
32/16/8 bits microprocessors (Atmel AT91 chip in our case).
@ Open-Source software
@ Elegant code.

Well tested (many previous success-stories).
But: - customer needs:

@ a touchscreen

o logs pulled via FTP

@ remote control

@ ,nicer icons”

@ to connect a barcode scanner
Too difficult to implement (within a reasonable time).
Out of the box in Linux (4-userspace) - but will it fit?

http://www.tnkernel.com/

eal-Time really means?

Popular definition:

Correctness of operation depends not
only on whether performed without

error, but also on the time (the upper
limit) in which the operation
completed.

Practical definition:

RT system is one in which can be
proved that any required operation
will be completed in a certain time.

@ Mathematical proof would be perfect. Unfortunately systems
are so complex, it is not possible.

@ System is tested (TDD). If deadlines are met (under load) for
all use-cases, system is Real-Time.
Note: In some cases (eg. certification for safety-critical tasks),
full-code coverage would be needed!

ime vs. Real-Fast

@ Linux kernel is designed to be ,, democratic”

e resources are equally disposed
e eg.: scheduler avoids process starvation

@ Usually, determinism is not taken into account

@ throughput is.

A

applications J libraries

)

USERSPACE

\

system calls

[)
{ N
y

\ v,

[HARDWARE]

Time vs. Real-Fast ...

Most layers and subsystems are complex:

kernel virtual memory
(the same for every process)

0x0 PROCESS 1 - virtual address space (cat /proc/<PID>/smaps) 0xC0000000 OXFFFFFFFF
page program library
4B code | code da o,

0x0 PROCESS 2 0xC0000000 | | OXFFFFFFFF
page program library
kB code | code data

— |

0x0 Physical address space RARER y y OXFFFFFFFF
o o o RAM RAM RAM RAM RAM RAM A A A AN
program | irary | program progam cache,
data
Flash | Flash | Flash e buffers,
read read -
exccute | execute | wrie witte

Latency tests

hat are we testing?

INPUT OUTPUT

iy

erence circuit

GENERATOR pC OSCILLOSCOPE
(square signal
from oscilloscope GPIO 1 Ch1

or

NE555 based circuit) ’— GPIO 2 Ch2

Input is triggered on falling and rising edge, output state changes
according to input.

In this case, we are using GPIO pin-s.
Input can be other external or internal: timer,
camera, network PHY, ADC etc.

O01_inout.c

interrupt handler

>
IRQ v exit t
t0 respond to
signal
02_uinout.c
bottom half
is issued
interrupt handler N deferred action
(upper half) (bottom half)
IRQ v t
t0 the time, response to signal
system can do other

things

Code is on GitHub:
https://github.com/marcinbis/mb-rt-data.git

https://github.com/marcinbis/mb-rt-data.git

MEASURE
S0

M 25005
B-Jui-12 2202

Tek L Trig'd i Pos: 138,005 CURZOR
+

Type
pro st gl A s .

Source
CH1

PR e

CH2 S00my b 50,08
17-3ep—12 2435

s add some load

$ cat /proc/loadavg
5.02 3.76 2.04 2/47 432

e 1/O on SD card:
cat /dev/mmcblkOpl > /dev/null
@ sending ASCII data to serial console:
cat /dev/zero | od -v
@ send network packages:
ping -f <ip address>
WARNING!: these tests just generate IRQ, they are not showing

real-life load.
Use real-case tests.

s under load

Telk T Tria*d kA Pos: 400,005 CURSOR
-

Type
St i s e ,.q.—.mm

Source
CH1

2 S ==

CH2 S00my k410008
17-3ep—12 2240

Linux:
Separates:
» logic (in userspace)
» mechanisms (provided by kernel)

pt-based 1/0

process process

/dev/sth) userspace
— - registered on module loading _ — = =T

- unregistered on module unloading

| |

kernelspace

| IRQ freed on module unloading
IRQ line on cur-
rent CPU is locked,

|________________J‘device

| file_operations { read() waits for request (optional) I
.open on waitqueue bottom half
.release deferred data handling
| }Lead*/ returns data and wakes tri l
process < riggers processes on
| } waitqueue |
| process context |
interrupt context
'
| IRQ registered on module irgreturn_t (*handler) H I
loading (request_irq()) and IRQ handler H
| associated with handler receives data from device '
schedules bottom halve H
'
H
'
'

rupt-based |/O - another view

L proces proces J

read() on device file
return
ssize_t
syscall syscall -
A
goes to waitqueue
sleep on interrupt | wake-up
waitqueue handling
. >
RQ v t
signal
response

the time, system
can do other tasks

@ 03_cinout.c

@ 04_real cinout.c

@ In case of GPIO: /sys/class/gpio/ can be used as well
(pollQ), read(), write()).

under load

Stop |

M 19.20m=
52 08H=
0.48m=
—8.720m=

under load

Stop

"Eit Hap
19.20m=

52.08H=

—5.720m=

T

F=ER .00

Real-Time

Tek g Trig'd f Pos: 400.0,us DISPLAY
+

Tvpe
Persist
JRRBETNNEE 1 [1 i Farmat
ITIT
’ [
+
me
CH2ETpOY M 180s CH2 7 1.52%
g G=Jul=12 1750 283.534Hz
latency E s
é‘_ jitter H I?
worst case deadline
input reaction

signal time

Deadline
Point in time, before which the action (system response) must

OocCcur.

e Hard Real-Time - deadline must be meet (fatal error if not).

e Firm Real-Time - deadline should be meet (system response
is useless otherwise).

o Soft Real-Time - deadline should be meet, but nothing
critical will happen if not (eg. decreased user experience,
sample drop ...).

The time between the moment in which the action was to occur,
and in which, in fact, occurred.

Undesired deviation of latency. For various reasons, latency is not
constant. Too large jitter, renders system unusable for data
acquisition.

Predictability

How much time, the action will take (eg. from IRQ occurred to
handler finished executing).
O(1) algorithms should be used.

Due to imperfect nature of real-world systems, we are considering
the Worst Case.

We have to know the latency in worst possible case.

ere is latency coming from?

task waits for syscall completion task ready task running
(SorD) tu run (R) (R)
I I task marked I
as ready to
I execute
interrupt handler |RQ
execution delay handler scheduler
P
interrupt handler scheduler scheduler
I I execution time Iexecution delayI execution
0 overall latency

o achieve Real-Time in Linux?

@ Micro-kernel approach:

o RTLinux - [Real Time [Linux
http://en.wikipedia.org/wiki/RTLinux,

there used to be open-source version: i i
http://www.rtlinuxfree.com/. ukernel

o Adeos/I-Pipe - i
http://home.gna.org/adeos/ - common
base_ [Hardware]

o RTAI - https://www.rtai.org/ - minimum
possible latency.

o Xenomai - http://www.xenomai.org/ -
provides various APls.

@ In-kernel approach:

o RT PREEMPT -
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/
kernel/projects/rt/

http://en.wikipedia.org/wiki/RTLinux
http://www.rtlinuxfree.com/
http://home.gna.org/adeos/
https://www.rtai.org/
http://www.xenomai.org/
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.kernel.org/pub/linux/kernel/projects/rt/

Xenomai Linux
domain domain

CPUO

l

Hardware
interrupt I-pipe

controller
CPU1

......’ e eI I N e I m CPUn

® @
© ©

interrupts being masked

interrupts being masked
(virtual)

(real)

o |-Pipe take control over all hardware interrupts
@ All system calls are passed through (I-Pipe)
@ Events are dispatched to different I-pipe domains.

$ cat /proc/ipipe/Xenomai

———- Handling ([Alccepted, [G]rabbed,
|+---- Sticky [Wlired, [D]iscarded)
| | +--- Locked

| | |+-- Exclusive
|1|1+- Virtual

[(IRQ] 1111
38: W..X.
418: W...V

[Domain info]
id=0x58454e4f
priority=topmost

$ cat /proc/ipipe/Linux
0: A....
1. A....

priority=100

(standard Linux task \ (RT task \
L GNU/libc) U GNusibc [Xenomai skin)
4 D

Linux subsystems os
(VFS) (network) Xenomai
RTOS

G C | | ™
(e)

\. S

There are actually two kernels:
o Xenomai
o Linux
process (its scheduling) can migrate between them.

| use-case: LinuxCNC

@ RTAI demonstration running on PC

o Ubuntu (LiveCD) + RTAI + Applications
o GUI

G language

Process visualisation

Software PLC (not only for learning)

Drivers for certain hardware ...

...or timer-based stepping

Let this test run for a few minutes, then note the maximum Jitter. You will use
it while configuring emc2.

‘While the test is running. you should "abuse” the computer. Move windows
around on the screen. Surf the web. Copy some large files around on the disk.
Play some music. Run an OpenGL program such as glxgears. The idea is to put
the PC through its paces while the latency test checks to see what the worst
case numbers are.

Max Interval (ns) Max Jitter (ns) Last interval (ns)
Servo thread (1.0ms): 994484 3204 991370

Base thread (25.0ps): 31018 6773 24807

Reset Statistics

55 =]

Eile Machine View

Qe gD uE UM ¢=zRX¥[PE»

Manual Control [F3] | MpI [F5] | Preview | DRO |

Feed Override:

spindle Override:

Jog Speed: 11828 mm/min
Jog Speed: 11828 deg/min
Max Velocity: 1200 mm/min

r1.676001 x-0.872871 y1.430760
r1.674000 x-0.724806 y1,508951
r1.672000 x-0.569860 y1.571892
r1.670000 x-0. 409595 y1.61899L
71668000 x-0.245625 y1.649816
11666001 x-0.079596 y1.664098
176: r1.662000 x0.25190 y1.642786
1660000 x0. 414237 y1.607485 7

Position: Relative Actual

[No tool

RT PREEMPT

@ Standard kernel

TASK 1 (high priotiry)

interrupt handler

v

@ Interrupts as threads
Kernel Features --—->
Preemption Mode (Complete Preemption ()) --->
(X) Complete Preemption (Real-Time)

-x— Thread Softirqs /* 2.6.33 %/
—-*— Thread Hardirgs

TASK 1 (high priority)

interrupt handler

I >

t
IRQ

Auto

B0.0us

B0.0us

@ Real-Time != Real Fast
Maximum latency (Worst Case) is limited, but minimum
latency is bigger.

o Kernel with RT-PREEMPT patch, does not make the whole
system Real-Time

@ Specially designed application and POSIX RT-API should be
used:

o Defined: IEEE 1003.1b. Linux supports it.

Scheduler

Memory locking

Shared memory

RT signals

Semaphores (priority inheritance)
Timers (esp. CLDCKJ"[ONOTDNIC)
AlO

ICS

Industrial control system

dosing process - specification

Loose material (or fluid)
is loaded into containers.

o

>

@ the main tank is suspended on weight
(tensometer)
@ conveyor or robot provides containers,

appearance of the container triggers
interrupt

@ the valve opens, and the material is poured
into a container

amount of material is measured by reading
data from the weight

main tank has a limited capacity, it can be
replenished from main silo by turning on
vacuum

@ if vacuum is turned on, it has to work for
some minimum time, while vacuum is
working, material cannot be poured.

t-dosing process - analysis

Weight dosing process can be modelled as a finite state machine.
[STOPPING STOPPED MANUAL CONTROL
process process manual controll
about to stop. stopped

WAIT_FOR_TRIGGER
wait for container to be
loaded

TRIGGERED
container comes
(t0)

[VACUUM_STOPPING]
if vacuum is ranning, wait for it

(t0 + settle_time)

DOSING_STOP
valve cioses
(t0+ settle_time + 53ms + X)

WEIGHT_DOSING
material is pouring, weight is controlled

(t0 + settle_time + 53ms)

DOSING_START
valve Gpens
(t0 + settle_time +52ms)

BALANCE_LEVELING
base weight of main tank
(t0 + settle_time + 1ms)

Process starts on WAIT_ON_TRIGGER state. If triggered, it runs on
timer (1ms).

START

INITIALIZATION
- memory allocation and locking
- load resources
- set scheduling parameters
- execute worker

1

WORKER

Vemmmaaae

r
. -
H I real-time
' waits forlan event: E scheduling
GUI IPC -4-9 IRQ, timeror i class and
- show current shared Some message L P_”_O_r"t}’_ .
state memory,
- respond to message p
user actions queue do_fsm_step:

I

- responds to input
- do calculations

- send messagess

- sets the timer and
\ go to sleep

P L) AL

System boot constraint: must be operational under 10s.
Results: 2.5s RT task, 8-9s GUI.

t-dosing process - implementation

Hardware
e PC for development, Debian GNU/Linux 6
@ Custom AT91SAMO9263 board for production, 2.6.33.7.2-rt30
http://www.osadl.org/ Latest Stable
o KT-SBC-SAM9-1, BeagleBoard-xM for testing, 2.6.33 and 3.0
GUI part
e written in QT/C++
@ userspace components provided by: Buildroot
@ ext4 on SD card as primary storage
@ optimized bootlader
Real-Time process (PREEMPT-RT)
@ implemented as separate process in C
@ communicates with GUI using POSIX shared memory and
message queue, in a lockless way:
e two control structures are stored in SHM

e one is utilized by running process, other can be changed by GUI
e then structs are switched

http://www.osadl.org/

Weight dosing - pneumatics are used (actuator latency is 15ms).

main() 1—)[:]<—> worker()

Threads - share virtual memory, have different scheduling settings.

Welding machine - ps
Medical laser controller - ps (or even less)

main()
(Linux task)

worker()

E— -
(Xenomai task)

Xenomai provides better latency and predictability.

main() fast serial worker()
(Linux task) connection ” |(dedicated uC)

Special hardware can be utilized too:
- two processors: eg. additional Cortex-M for running worker task
- multicore systems: eg. Freescale Vybrid (Cortex-A5 + Cortex-M4)

Use appropriate programming language

@ C - but make it object-oriented (for reference - Linux kernel:
buses, drivers, classes etc.)
@ C++ - would be nice too

e cannot be utilized inside kernel or as Xenomai kernel process
e can be executed as bare-metal pC or in userspace

o Utilize design patterns.

Set the proper scheduler class and priority

| A

struct sched_param sp;
sp.sched_priority = MY_PRIORITY;
ret = sched_setscheduler (0, SCHED_FIFO, &sp);

@ Interrupts run in threads, default to: SHCED_FIFQ/50.
@ ...do not forget to fine-tune them.
@ SCHED_DEADLINE can be helpful too.

Lock all memory (mlock)
mlockall (MCL_CURRENT |MCL_FUTURE) ;

Try to cause page_fault (allocated memory, data from files)

buf = malloc(BUF_SIZE);
memset (buf, 0, BUF_SIZE);

@ Memory is locked, so it stays on place.

Prefault the stack (it can be shared within process we have forked
from)

/* GCC will not inline this function */
__attribute__ ((noinline)) void stack_prefault(void)
{

unsigned char tab[MAX_SAFE_STACK];

/* GCC will omit optimizations */

asm("");

memset (tab, 0, MAX_SAFE_STACK) ;
}
/*...%/
stack_prefault();

Use POSIX timer to do the fsm step (in a proper way)
#define NSEC_IN_SEC 10000000001

#define INTERVAL 10000001

struct timespec timeout;

clock_gettime (CLOCK_MONOTONIC, &timeout) ;
while (1) {
do_fsm_step(&some_data) ;
timeout.tv_nsec += INTERVAL;
if (timeout.tv_nsec >= NSEC_IN_SEC) {
timeout.tv_nsec -= NSEC_IN_SEC;
timeout.tv_sec++;
}
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,
&timeout, NULL);

[fsml} [“fsm }
| ims — 1ms — 1ms —

clock_nanosleep(CLOCK_MONOTONIC, 0, &interval, NULL);

| P | I 1 I
fsm fsm fsm -fsm
| ims — ims | I 1ms | ims ims

clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &timeout, NULL);

Utilize AlO to write or read data (eg. sensor data, production logs)

struct aiocb {

int aio_fildes //File descriptor.
volatile void *aio_buf //Location of buffer.
/* ... %/

};
aio_write(struct aiocb *);
aio_return(struct aiocb *);

aio_completion_handler() CUILb|0Ck

aio_write()
aio_write()
T T aio_write()
cblist

0 0 0 0 1 1 1 1 0 0 0 0 | free_list

buff

struct aiocb

produces 1 - busy, 0 - free
data

RT TASK

ta,data,data,data,data,data

A

ANIE AWARYJNE. ..

.. means 'Emergency Stop’ in
Polish.

