
ELCE 2012
Real-Time Linux in Industrial Appliances

Martin Bis

http://bis-linux.com
martin@bis-linux.com

November 2012

Martin Bis ELCE 2012 Real-Time Linux in Industrial Appliances

About me

Martin Bis

GNU/Linux (from
administration to kernel
programming)

Embedded Linux

Trainings, consulting, support
(http://bis-linux.com)

Industrial appliances (Linux +
Real-Time)

http://bis-linux.com

Booming usage of Linux in embedded environments

Linux (and Open Source) is being increasingly used in
industrial control devices (previously reserved for classic
RTOSes).

Hardware capable of running Linux become cheaper.
Linux supports lots of hardware, as well as communication
protocols.
Security is easy to achieve (security != safety critical)
Code is easy to develop and reusable.

More and more such applications must work in Real-Time.

Practical case

Weight dosing in injection-molding process (plastics industry).
Application based on TNKernel.
http://www.tnkernel.com/
compact and very fast real-time kernel for the embedded
32/16/8 bits microprocessors (Atmel AT91 chip in our case).
Open-Source software
Elegant code.
Well tested (many previous success-stories).

But: - customer needs:
a touchscreen
logs pulled via FTP
remote control
„nicer icons”
to connect a barcode scanner

Too difficult to implement (within a reasonable time).
Out of the box in Linux (+userspace) - but will it fit?

http://www.tnkernel.com/

What Real-Time really means?

Popular definition:

Correctness of operation depends not
only on whether performed without
error, but also on the time (the upper
limit) in which the operation
completed.

And in practice

Practical definition:

RT system is one in which can be
proved that any required operation
will be completed in a certain time.

Mathematical proof would be perfect. Unfortunately systems
are so complex, it is not possible.

System is tested (TDD). If deadlines are met (under load) for
all use-cases, system is Real-Time.
Note: In some cases (eg. certification for safety-critical tasks),
full-code coverage would be needed!

Real-Time vs. Real-Fast

Linux kernel is designed to be „democratic”
resources are equally disposed
eg.: scheduler avoids process starvation

Usually, determinism is not taken into account

throughput is.

Real-Time vs. Real-Fast ...

Most layers and subsystems are complex:

Latency tests

What are we testing?

Reference circuit

Input is triggered on falling and rising edge, output state changes
according to input.

In this case, we are using GPIO pin-s.
Input can be other external or internal: timer,
camera, network PHY, ADC etc.

Driver design

01 inout.c

02 uinout.c

Code is on GitHub:
https://github.com/marcinbis/mb-rt-data.git

https://github.com/marcinbis/mb-rt-data.git

Results

Let’s add some load

$ cat /proc/loadavg
5.02 3.76 2.04 2/47 432

I/O on SD card:

cat /dev/mmcblk0p1 > /dev/null

sending ASCII data to serial console:

cat /dev/zero | od -v

send network packages:

ping -f <ip address>

WARNING!: these tests just generate IRQ, they are not showing
real-life load.
Use real-case tests.

Results under load

Linux:

Separates:
logic (in userspace)
mechanisms (provided by kernel)

Interrupt-based I/O

Interrupt-based I/O - another view

03 cinout.c
04 real cinout.c
In case of GPIO: /sys/class/gpio/ can be used as well
(poll(), read(), write()).

Userspace - results under load

Userspace - results under load

Real-Time

Concepts

Deadline

Point in time, before which the action (system response) must
occur.

Hard Real-Time - deadline must be meet (fatal error if not).

Firm Real-Time - deadline should be meet (system response
is useless otherwise).

Soft Real-Time - deadline should be meet, but nothing
critical will happen if not (eg. decreased user experience,
sample drop ...).

Latency

The time between the moment in which the action was to occur,
and in which, in fact, occurred.

Concepts

Jitter

Undesired deviation of latency. For various reasons, latency is not
constant. Too large jitter, renders system unusable for data
acquisition.

Predictability

How much time, the action will take (eg. from IRQ occurred to
handler finished executing).
O(1) algorithms should be used.

Worst Case

Due to imperfect nature of real-world systems, we are considering
the Worst Case.

We have to know the latency in worst possible case.

Where is latency coming from?

How to achieve Real-Time in Linux?

1 Micro-kernel approach:
RTLinux -
http://en.wikipedia.org/wiki/RTLinux,
there used to be open-source version:
http://www.rtlinuxfree.com/.
Adeos/I-Pipe -
http://home.gna.org/adeos/ - common
base.
RTAI - https://www.rtai.org/ - minimum
possible latency.
Xenomai - http://www.xenomai.org/ -
provides various APIs.

2 In-kernel approach:
RT PREEMPT -
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/
kernel/projects/rt/

http://en.wikipedia.org/wiki/RTLinux
http://www.rtlinuxfree.com/
http://home.gna.org/adeos/
https://www.rtai.org/
http://www.xenomai.org/
https://rt.wiki.kernel.org
http://www.kernel.org/pub/linux/kernel/projects/rt/
http://www.kernel.org/pub/linux/kernel/projects/rt/

Adeos/I-Pipe

I-Pipe take control over all hardware interrupts

All system calls are passed through (I-Pipe)

Events are dispatched to different I-pipe domains.

$ cat /proc/ipipe/Xenomai
+----- Handling ([A]ccepted, [G]rabbed,
|+---- Sticky [W]ired, [D]iscarded)
||+--- Locked
|||+-- Exclusive
||||+- Virtual

[IRQ] |||||
38: W..X.
418: W...V
[Domain info]
id=0x58454e4f
priority=topmost

$ cat /proc/ipipe/Linux
0: A....
1: A....

...
priority=100

Xenomai

There are actually two kernels:
Xenomai
Linux

process (its scheduling) can migrate between them.

RTAI use-case: LinuxCNC

RTAI demonstration running on PC
Ubuntu (LiveCD) + RTAI + Applications

GUI
G language
Process visualisation
Software PLC (not only for learning)
Drivers for certain hardware . . .
. . . or timer-based stepping

LinuxCNC

RT PREEMPT

1 Standard kernel

2 Interrupts as threads
Kernel Features --->
Preemption Mode (Complete Preemption ()) --->
(X) Complete Preemption (Real-Time)

-*- Thread Softirqs /* 2.6.33 */
-*- Thread Hardirqs

04 under load

04 under load

Real-Time != Real Fast
Maximum latency (Worst Case) is limited, but minimum
latency is bigger.

Kernel with RT-PREEMPT patch, does not make the whole
system Real-Time
Specially designed application and POSIX RT-API should be
used:

Defined: IEEE 1003.1b. Linux supports it.
Scheduler
Memory locking
Shared memory
RT signals
Semaphores (priority inheritance)
Timers (esp. CLOCK MONOTONIC)
AIO

ICS
Industrial control system

Weight-dosing process - specification

Loose material (or fluid)
is loaded into containers.

the main tank is suspended on weight
(tensometer)

conveyor or robot provides containers,
appearance of the container triggers
interrupt

the valve opens, and the material is poured
into a container

amount of material is measured by reading
data from the weight

main tank has a limited capacity, it can be
replenished from main silo by turning on
vacuum

if vacuum is turned on, it has to work for
some minimum time, while vacuum is
working, material cannot be poured.

Weight-dosing process - analysis

Weight dosing process can be modelled as a finite state machine.

Process starts on WAIT ON TRIGGER state. If triggered, it runs on
timer (1ms).

System boot constraint: must be operational under 10s.
Results: 2.5s RT task, 8-9s GUI.

Weight-dosing process - implementation

Hardware
PC for development, Debian GNU/Linux 6
Custom AT91SAM9263 board for production, 2.6.33.7.2-rt30
http://www.osadl.org/ Latest Stable
KT-SBC-SAM9-1, BeagleBoard-xM for testing, 2.6.33 and 3.0

GUI part
written in QT/C++
userspace components provided by: Buildroot
ext4 on SD card as primary storage
optimized bootlader

Real-Time process (PREEMPT-RT)
implemented as separate process in C
communicates with GUI using POSIX shared memory and
message queue, in a lockless way:

two control structures are stored in SHM
one is utilized by running process, other can be changed by GUI
then structs are switched

http://www.osadl.org/

Other cases...

Weight dosing - pneumatics are used (actuator latency is 15ms).

Threads - share virtual memory, have different scheduling settings.

Welding machine - µs
Medical laser controller - µs (or even less)

Xenomai provides better latency and predictability.

Special hardware can be utilized too:
- two processors: eg. additional Cortex-M for running worker task
- multicore systems: eg. Freescale Vybrid (Cortex-A5 + Cortex-M4)

Tips&Tricks

Use appropriate programming language

C - but make it object-oriented (for reference - Linux kernel:
buses, drivers, classes etc.)
C++ - would be nice too

cannot be utilized inside kernel or as Xenomai kernel process
can be executed as bare-metal µC or in userspace

Utilize design patterns.

Set the proper scheduler class and priority
struct sched_param sp;
sp.sched_priority = MY_PRIORITY;
ret = sched_setscheduler(0, SCHED_FIFO, &sp);

Interrupts run in threads, default to: SHCED FIFO/50.
. . . do not forget to fine-tune them.
SCHED DEADLINE can be helpful too.

Lock all memory (mlock)

mlockall(MCL_CURRENT|MCL_FUTURE);

Try to cause page fault (allocated memory, data from files)

buf = malloc(BUF_SIZE);
memset(buf, 0, BUF_SIZE);

Memory is locked, so it stays on place.

Prefault the stack (it can be shared within process we have forked
from)

/* GCC will not inline this function */
__attribute__ ((noinline)) void stack_prefault(void)
{
unsigned char tab[MAX_SAFE_STACK];
/* GCC will omit optimizations */
asm("");
memset(tab, 0, MAX_SAFE_STACK);

}
/*...*/
stack_prefault();

Use POSIX timer to do the fsm step (in a proper way)

#define NSEC_IN_SEC 1000000000l
#define INTERVAL 1000000l
struct timespec timeout;

clock_gettime(CLOCK_MONOTONIC, &timeout);
while (1) {
do_fsm_step(&some_data);
timeout.tv_nsec += INTERVAL;
if (timeout.tv_nsec >= NSEC_IN_SEC) {
timeout.tv_nsec -= NSEC_IN_SEC;
timeout.tv_sec++;

}
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME,

&timeout, NULL);
}

Utilize AIO to write or read data (eg. sensor data, production logs)

struct aiocb {
int aio_fildes //File descriptor.
volatile void *aio_buf //Location of buffer.
/* ... */

};
aio_write(struct aiocb *);
aio_return(struct aiocb *);

ZATRZYMANIE AWARYJNE. . .

. . . means ’Emergency Stop’ in
Polish.

