
Non-confidential © 2019 Arm Limited

Jon Mason
23 August 2019

Using Yocto as a
Method to
Upstream,

Maintain, and
Track Patches

2 Non-confidential © 2019 Arm Limited 2

Problem
• SoCs have multiple open-source components

• Kernel
• U-boot
• ATF
• Graphics

• These need to be upstreamed and maintained
• We need a simple way to manage this

3 Non-confidential © 2019 Arm Limited 3

FriendlyArm NanoPi Fire3

• Samsung S5P6818
• Cortex-A53 eight-Core at 1.4GHz

• Vendor supplied “Ubuntu” image
• Kernel (v4.4) and u-boot (2016.01)

source available at vendor website

• Used as a guinea pig for this exercise

Non-confidential © 2019 Arm Limited

Groundwork -
Conforming

existing code to
Yocto

5 Non-confidential © 2019 Arm Limited 5

The 4 Steps
1. Get it working under Yocto
2. Migrate to generic sources
3. Split into patches
4. Push patches

6 Non-confidential © 2019 Arm Limited 6

Get it working under Yocto
1. Commit to code git trees
2. Write recipes
3. Verify bootable image is created

7 Non-confidential © 2019 Arm Limited 7

Commit to code git trees
• Some SoC vendors only provide the legally obligated source in tarball
• This can be handled easily by inspect the Makefile for the version, cloning a version of

the relevant tree with the relevant version tag, copying over the source, and making an
atomic commit on top of the tree. This will show the relevant changes, while being not
too messy.

8 Non-confidential © 2019 Arm Limited 8

Write recipes
• Recipes for every binary needed for the bootable image are needed, along with a WIC

file to specify how an bootable image is created with these binaries
• This is the “hardest part”, as writing recipes from scratch may be necessary, and ugly

hacks like copying binaries for sources you do not have access to may be necessary
• Create a unique meta- layer (if necessary)

• Potential huge benefit
• If this work is being done for a series of boards based on the same SoC, the amount of work to create

unique images for each board is almost trivial (after doing the initial board)
• As of right now, there are 14 boards based on the Yocto layer I created, and it should be trivial to add

support for 2 more product lines based on the same SoC

Non-confidential © 2019 Arm Limited

NanoPi Fire 3
recipes

10 Non-confidential © 2019 Arm Limited 10

Linux Kernel recipe
inherit kernel

require recipes-kernel/linux/linux-yocto.inc
SRC_URI = "git://github.com/jonmason/linux-s5p6818.git;protocol=https;branch=nanopi2-v4.4.y \

file://s5p4418_defconfig.patch \

file://s5p6818_defconfig.patch \

"
SRCREV = "2baec73557c2fe5350160596870f7e1f411c91be"

LINUX_VERSION ?= "4.4.49"

PV = "${LINUX_VERSION}+git${SRCPV}"

LICENSE = "GPLv2 & LGPLv2"
S = "${WORKDIR}/git"

11 Non-confidential © 2019 Arm Limited 11

U-boot recipe
require ${COREBASE}/meta/recipes-bsp/u-boot/u-boot.inc

SUMMARY = "U-Boot bootloader for Samsung/Nexell s5pxx18"

LICENSE = "GPLv2+"

LIC_FILES_CHKSUM = "file://Licenses/README;md5=0507cd7da8e7ad6d6701926ec9b84c95"

u-boot needs devtree compiler to parse dts files

DEPENDS += "dtc-native bc-native"

SRCREV = "${AUTOREV}"

SRC_URI = "git://github.com/friendlyarm/u-boot.git;protocol=https;branch=nanopi2-v2016.01"

S = "${WORKDIR}/git"

do_configure() {

mkdir -p ${B}/tools/nexell/nsih/

cp ${S}/tools/nexell/nsih/nanopi2.txt ${B}/tools/nexell/nsih/

cp ${S}/tools/nexell/nsih/nanopi3.txt ${B}/tools/nexell/nsih/

sed -i '/autoconf/d' ${S}/arch/arm/dts/s5p4418.dtsi

}

12 Non-confidential © 2019 Arm Limited 12

L-loader recipe
DESCRIPTION = "l-loader for s5p6818"

LICENSE = "GPLv2+"

inherit deploy

#SRC_URI = "git://git.nexell.co.kr/nexell/secure/l-loader;protocol=git;branch=nexell"

SRC_URI = "git://github.com/friendlyarm/sd-fuse_s5p6818.git;protocol=https;"

SRCREV = "ff5d9d52f6dd8d608a4fc3829976a078d3defe0f"

LIC_FILES_CHKSUM = "file://README.md;md5=0d6c7f42efcf5e2931accdbdf5d2bcfc"

S = "${WORKDIR}/git"

do_deploy() {

 install -m 0644 ${S}/prebuilt/fip-loader.img ${DEPLOYDIR}/

}

13 Non-confidential © 2019 Arm Limited 13

Verify bootable image is created
• Hook into automated testing framework if possible

14 Non-confidential © 2019 Arm Limited 14

Migrate to generic sources
• Rebase the existing code on top of upstream git trees

15 Non-confidential © 2019 Arm Limited 15

Updating u-boot recipe (example)
Create a working u-boot version

git clone git://git.denx.de/u-boot.git u-boot
cd u-boot
git remote add friendlyarm https://github.com/friendlyarm/u-boot.git
git remote add github git@github.com:jonmason/u-boot.git
git fetch -tp --all
git push github friendlyarm/nanopi2:nanopi2

16 Non-confidential © 2019 Arm Limited 16

Updating u-boot recipe (example)
Change the recipe

$ git diff
diff --git a/recipes-bsp/u-boot/u-boot-nexell_2016.01.bb b/recipes-bsp/u-boot/u-boot-nexell_2016.01.bb
index 7381224..d2948c1 100644
--- a/recipes-bsp/u-boot/u-boot-nexell_2016.01.bb
+++ b/recipes-bsp/u-boot/u-boot-nexell_2016.01.bb
@@ -9,7 +9,8 @@ SRCREV = "${AUTOREV}"

-SRC_URI = "git://github.com/friendlyarm/u-boot.git;protocol=https;branch=nanopi2-v2016.01"
+#SRC_URI = "git://github.com/friendlyarm/u-boot.git;protocol=https;branch=nanopi2-v2016.01"
+SRC_URI = "git://github.com/jonmason/u-boot.git;protocol=https;branch=nanopi2"

S = "${WORKDIR}/git"

17 Non-confidential © 2019 Arm Limited 17

Updating u-boot recipe (example)
Rebase onto an existing upstream release

git checkout -b nanopi2 friendlyarm/nanopi2
git rebase v2016.01
git rebase -i v2016.01
git push -f github nanopi2

Build and verify no changes to the recipes are needed

NOTE: not able to cleanly rebase to the latest version do to the amount of changes done
between v2016.01 and v2019.01

18 Non-confidential © 2019 Arm Limited 18

Updating kernel recipe
diff --git a/recipes-kernel/linux/linux-nexell_4.4.bb b/recipes-kernel/linux/linux-nexell_4.4.bb

index 9e30a7a..be67b83 100644

--- a/recipes-kernel/linux/linux-nexell_4.4.bb

+++ b/recipes-kernel/linux/linux-nexell_4.4.bb

@@ -7,11 +7,9 @@ SRC_URI = "git://github.com/jonmason/linux-s5p6818.git;protocol=https;branch=nan

file://s5p6818_defconfig.patch \

"

-SRCREV = "2baec73557c2fe5350160596870f7e1f411c91be"

+SRCREV = "${AUTOREV}"

-LINUX_VERSION ?= "4.4.49"

-

-PV = "${LINUX_VERSION}+git${SRCPV}"

+KERNEL_VERSION_SANITY_SKIP = "1"

LICENSE = "GPLv2 & LGPLv2"

19 Non-confidential © 2019 Arm Limited 19

Split into patches
Preservation of history is not important, but maintaining copyright is!

Recommend split and order of upstreaming:
1. Base Soc Support (CPU, RAM, UART)
2. Clocks
3. Storage
4. Networking
5. Miscellaneous

Non-confidential © 2019 Arm Limited

Using Yocto as a
Method to
Upstream,

Maintain, and
Track Patches

21 Non-confidential © 2019 Arm Limited 21

Upstreaming Process
1. Email relevant mailing lists
2. Get feedback
3. Modify patches
4. Repeat

22 Non-confidential © 2019 Arm Limited 22

Using Yocto to upstream

23 Non-confidential © 2019 Arm Limited 23

How to do the upstreaming with Yocto
• 2 easy ways to create and track

1. Git tree that is being referenced in Yocto recipe
2. Patches directory in the meta layer (most likely generated via git tree)

• Rebase source to the latest tag (assuming git tree upstream is tagged)
• `git rebase -i $TAG`

– This will either work without problem or be extremely painful, mostly depending on the amount of
modifications in the code being touched by people upstream

• Because patches were already split previously and are now on the latest version, all you
need to do is `git send-email`

24 Non-confidential © 2019 Arm Limited 24

Using Yocto to Track patches
Update the upstream recipe to track the latest version. As each patch is pulled in, git will
automatically skip over it when rebasing. Thus the delta between the latest tag and the
internal HEAD will be the queue of outstanding patches.
• If using the git method of upstreaming the patches, rebase the git tree on the newest

upstream tag and modify the SRCREV hash in the recipe (or better yet, set to AUTOREV)
• If using the directory of patches, you might need to regenerate them and recommit to

the meta-layer git tree when the changes no longer merge cleanly when the recipe is
building.

25 Non-confidential © 2019 Arm Limited 25

Using Yocto to maintain
• Updating recipes (or using the upstream recipes) to track the latest versions
• Use the “tracking” method to verify patches are accepted upstream

26 Non-confidential © 2019 Arm Limited 26

Push your layer to the OE layer index

27 Non-confidential © 2019 Arm Limited 27

Finally…
• Recipes and relevant code can be found at

https://github.com/jonmason/meta-samsung

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धɊवाद
 شكرًا
תודה

© 2019 Arm Limited

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धɊवाद
 شكرًا
תודה

