
How I survived to a SoC
with a terrible Linux BSP
Working with jurassic vendor kernels, missing pieces and buggy code

Luca Ceresoli — AIM Sportline
luca@lucaceresoli.net
http://lucaceresoli.net
ELC-E 2017

mailto:luca@lucaceresoli.net
http://lucaceresoli.net

About me

• Embedded Linux engineer
at AIM Sportline
http://www.aim-sportline.com/

• Develop real products on custom
hardware

• Kernel, bootloader, drivers
• Integration, build system

• Open source enthusiast
• Contributor to Buildroot and a few

other projects

1

http://www.aim-sportline.com/

Introduction

The ideal BSP

• BSP = Board Support Package
• The ideal BSP

• Mainline kernel
• Mainline U-Boot or Barebox
• Good hardware documentation

2

The System on Chip

Nuvoton N32926
• ARM926EJ-S @ 240 MHz
• Peripherals: H.264 en/decoder,

Ethernet MAC, USB, CMOS sensor
interface, video out, LCD controller,
sound, …

• 64 MB DDR2 in package
• LQFP package
• Ideal application: low cost IP camera

SoC

DDR2

Source: https://www.nuvoton.com/hq/products/microprocessors/arm9-mpus/n3292-h.264-codec-series/n32926u1dn

3

https://www.nuvoton.com/hq/products/microprocessors/arm9-mpus/n3292-h.264-codec-series/n32926u1dn

My Quest

My quest

• Documentation
• Linux kernel
• Booting
• Tools
• Customer support

4

Documentation

Public documentation

• An 8-page datasheet (mostly a list of features)

From: https://www.nuvoton.com/hq/products/microprocessors/arm9-mpus/n3292-h.264-codec-series/n32926u1dn

5

https://www.nuvoton.com/hq/products/microprocessors/arm9-mpus/n3292-h.264-codec-series/n32926u1dn

Documentation for customers

• Only under NDA

6

Accessible documentation

• A “low-cost” devkit is available from chinese online stores
• Contains a DVD-ROM with a subset of the BSP for customers

• Documentation and software
• Contains the N3292x Design Guide

• SoC peripherals (registers)

7

Linux kernel

Vendor kernel VS mainline kernel

Base kernel: Linux 2.6.35.4 (2010)

2.6.35.4 → 2.6.35.14
(latest stable)

• 11 months
• 1382 bugfix commits
• Merged with minimal conflicts

2.6.35.14 → 4.13.y
(latest mainline)

• A countless number of fixes,
improvements, new features

• Security
• Device Tree
• New device drivers!

8

Vendor kernel additions

• Total: 170.000 lines changed
• Provided as patches:

• w55fa92-kernel-2.6.35-000.patch (3.6 MB)
• w55fa92-kernel-2.6.35-001.patch (1.4 MB)
• w55fa92-kernel-2.6.35-002.patch (0.4 MB)
• do_kernel_patch.sh

9

Vendor kernel issues

1. Bugs
2. Missing features
3. Code quality

10

Bugs

Examples:

• Sound Processing Unit ALSA driver
• arecord myfile.wav → kernel crash

• NULL pointer dereference

• H.264 decoder driver
• Works with sample streams
• Kernel crash on streaming packet loss

• Several NULL pointer dereferences

11

Missing features

Examples:

• GPIO
• Basic functionality is implemented
• No interrupt handling

• Power Management
• Implemented with a proprietary API
• Also implemented the Linux standard way, but incomplete and not working

12

Code quality

• Average quality of additions: generally bad
• Trivial metric: +521 lines starting with #if 0

• A few examples follow

13

Code quality: driver model

drivers/video/w55fa92_fb.c:
#ifdef CONFIG_GIANTPLUS_GPM1006D0_320X240
#include "w55fa92_GIANTPLUS_GPM1006D0.c"
#endif

#ifdef CONFIG_TOPPLY_320X240
#include "w55fa92_TOPPLY_320x240.c"
#endif

/* ...5 more displays... */

#if 0
#ifdef CONFIG_SHARP_LQ035Q1DH02_320X240
#include "w55fa92_Sharp_LQ035Q1DH02.c"
#endif

#ifdef CONFIG_WINTEK_WMF3324_320X240
#include "w55fa92_Wintek_WMF3324.c"
#endif

/* ...5 more displays... */
#endif

14

Code quality: H.264 codec memory allocation

drivers/misc/codec264/favc_module.c:
unsigned int get_avc_buffer_size(void)
{
/* ...~90 lines... */
return TOTAL_VDE_BUF_SIZE;

}
EXPORT_SYMBOL(get_avc_buffer_size);

From arch/arm/mm/mmu.c:
extern unsigned int get_avc_buffer_size(void);
void __init reserve_node_zero(pg_data_t *pgdat)
{
/* ... */
buffer_size = get_avc_buffer_size();
printk("AVC Buffer Size: 0x%x\n",buffer_size);
w55fa92_vde_v = alloc_bootmem_low_pages (buffer_size);
/* ... */

}

15

Booting

Bootloaders in the BSP

• No U-Boot
• No Barebox
• Some proprietary bootloaders

• Sources provided, but not open source (“All rights reserved”)
• Tied to the SoC

16

Vendor booting scheme (NAND example)

SPL U-Boot
UBI

env root fs
(UBIFS)

BOOT
ROM

NAND
Loader

NVT
Loader

FAT1
conprog.bin
Image (with initramfs)

FAT2

start.sh

kernel

A common booting scheme
(with U-Boot)

Nuvoton N32926
expose FAT as USB mass storage

BOOT
ROM

17

Vendor booting scheme pros

• Easy deployment of demos provided by vendor
1. Press a button during boot
2. Mount mass storage on PC
3. Replace files

18

Vendor booting scheme issues /1

• FAT
• Unreliable on power loss
• It just cannot contain a UNIX-like rootfs

• NAND FTL (Flash Translation Layer)
• FAT-on-NAND emulation (with FTL) is in a binary module
• NVT Loader cannot mount UBIFS

• No provision for redundancy
• Data may be accessble to users in production

19

Vendor booting scheme issues /2

• Root filesystem is an initramfs
• Volatile
• Uses RAM

• NVT Loader does not pass cmdline to kernel
• it must be hard-coded in the kernel (CONFIG_CMDLINE)

• NFS booting
• Needs cmdline parameters → must rebuild and reflash the kernel

• Cannot load kernel via TFTP

20

Alternative booting options?

20

Option 1: add a SquashFS layer on top of FAT

NAND
Loader

NVT
Loader

FAT1
conprog.bin
Image (with initramfs)

start.sh squashfs

• Keep the existing structure untouched
• Remove initramfs constraints
• Still read-only

• ext2 or any other rw filesystem over FAT over NAND is crazy

• The device cannot atomically upgrade itself

21

Option 2: jump from FAT to UBIFS

NAND
Loader

NVT
Loader

FAT1
conprog.bin
Image (with initramfs)

UBI
root fs
(UBIFS)

• UBI and UBIFS are designed for NAND!
• Tweaks needed

• Change the initramfs /init to mount UBIFS and switch_root
• Tweak NVT Loader not to use all space for FAT

• USB mass storage can only update kernel
• FAT area atrophied, NVT Loader almost useless

22

Option 3: skip NVT Loader

NAND
Loader

Image +
initramfs

UBI
root fs
(UBIFS)

• NAND Loader loads Image to address 0 and jumps there
• No more NVT Loader and FAT
• Kernel still on bare NAND and without cmdline
• Replacement for the U-Boot environment?

23

Option 4: Port U-Boot

• Port U-Boot or Barebox to the SoC
• Maybe keeping the vendor NAND Loader (SPL)

• Unleashes all the known advantages
• Environment, boot-time scripting, prompt
• cmdline, TFTP boot, kernel loading from rootfs
• Redundancy for all/most components on bare NAND

• Time to market?

24

Tools

Vendor tools

• Ideally, no vendor-specific tools are needed
• Flashing an empty memory is different

• Boot ROM protocol is not standardized
• Vendor-specific tools

25

Flashing tools

• Tool provided to write memory
• Quite flexible

• Can write NAND, SPI, SD, SDRAM (and
execute)

• Over USB

• GUI, not scriptable
• For Windows only
• Proprietary, binary only
• Protocol to Boot ROM not documented
→ You’re locked to it

Windows
PC

BOOT
ROM

NAND

U
S
B

NOR SD RAM

26

NAND partition table

• Proprietary partition table in the NAND Loader
area

• The proprietary tool writes only this format
• Not a bad idea

• but standard tools work differently

→ You can’t get rid of the table

NAND
Loader

27

Customer support

A real e-mail exchange (short form)

Me The proprietary tool doesn’t work

CS Works on my PC, see screenshot
Me Not on mine; can it log errors so you can diagnose it?
CS Adding logging would not be practical

28

A real e-mail exchange (short form)

Me The proprietary tool doesn’t work
CS Works on my PC, see screenshot

Me Not on mine; can it log errors so you can diagnose it?
CS Adding logging would not be practical

28

A real e-mail exchange (short form)

Me The proprietary tool doesn’t work
CS Works on my PC, see screenshot
Me Not on mine; can it log errors so you can diagnose it?

CS Adding logging would not be practical

28

A real e-mail exchange (short form)

Me The proprietary tool doesn’t work
CS Works on my PC, see screenshot
Me Not on mine; can it log errors so you can diagnose it?
CS Adding logging would not be practical

28

Concluding remarks

The result

Comparison with a well-supported SoC

• Higher development cost
• Longer time-to-market
• Final product quality is lower

• The hardware would allow to do better

29

What can I do to improve things?

• As an embedded Linux engineer
• Assess potential problems early while evaluating a SoC

• As a hobbyist or a hacker
• Pick boards with good mainline support, or…
• Improve existing support and mainline it

30

What can vendors do to ship better BSPs?

• Don’t reinvent the wheel
• Write good docs, no NDA, no registration

• Including your Boot ROM protocol
• And let people write the tools they want

• Push your code to mainline
• Leverage the community

• Let your engineers use mailing-lists, IRC etc
• Make cheap, hacker-friendly boards

31

A possible idea?

Mainline
Linux 4.14

All images are copyright of their respective owners ;)

32

A possible idea?

Mainline
Linux 4.14

All images are copyright of their respective owners ;)

32

A possible idea?

Mainline
Linux 4.14

All images are copyright of their respective owners ;)

32

Questions?

Thank you for your attention!

Luca Ceresoli
luca@lucaceresoli.net

http://lucaceresoli.net

© Copyright 2017, Luca Ceresoli
Slides released under

Creative Commons Attribution - Share Alike 3.0 License
https://creativecommons.org/licenses/by-sa/3.0/

33

mailto:luca@lucaceresoli.net
http://lucaceresoli.net
https://creativecommons.org/licenses/by-sa/3.0/

References

• Stuck in 2009 — How I Survived
Will Sheppard, Embedded Bits Limited
ELC-E 2016
https://elinux.org/ELC_Europe_2016_Presentations

• How I survived to a SoC with a terrible Linux BSP
Luca Ceresoli
FOSDEM 2016
(Previous version of this talk)
https://archive.fosdem.org/2017/schedule/event/terrible_bsp/

34

https://elinux.org/ELC_Europe_2016_Presentations
https://archive.fosdem.org/2017/schedule/event/terrible_bsp/

Extra Slides

Kernel code quality — Extra
examples

Kernel code quality — example 1

Changes to Makefile:

-ARCH?= $(SUBARCH)
-CROSS_COMPILE?=
-CROSS_COMPILE?= $(CONFIG_CROSS_COMPILE:''%''=%)
+#ARCH?= $(SUBARCH)
+ARCH= arm
+#CROSS_COMPILE?=
+#CROSS_COMPILE?= $(CONFIG_CROSS_COMPILE:''%''=%)
+CROSS_COMPILE= arm-linux-

• Prevents using toolchains with a different prefix
• Any advantage?

Kernel code quality — example 2

Changes to arch/arm/boot/Makefile:

$(obj)/Image: vmlinux FORCE
$(call if_changed,objcopy)
@echo ' Kernel: $@ is ready'

+ifeq ($(CONFIG_ARCH_W55FA92),y)
+ cp $@ ../image/conprog.bin
+endif

• ../image/ does not make sense in any buildsystem

Kernel code quality — example 3

sound/soc/w55fa92/w55fa92_spu.c:

if (nChannels ==1)
{

DrvSPU_EnableInt(_u8Channel0, DRVSPU_ENDADDRESS_INT);
DrvSPU_EnableInt(_u8Channel0, DRVSPU_THADDRESS_INT);

}
else
{ /* just open one channel interrupt */

DrvSPU_EnableInt(_u8Channel0, DRVSPU_ENDADDRESS_INT);
DrvSPU_EnableInt(_u8Channel0, DRVSPU_THADDRESS_INT);

}

• Find the differences between the then and the else branch

Kernel code quality — example 4

sound/soc/w55fa92/w55fa92_spu.c:

static int DrvSPU_EnableInt(u32 u32Channel, u32 u32InterruptFlag)
{

if ((u32Channel >=eDRVSPU_CHANNEL_0) && (u32Channel <=eDRVSPU_CHANNEL_31))
{
/* ... */
if (u32InterruptFlag & DRVSPU_USER_INT)
{

AUDIO_WRITE(REG_SPU_CH_EVENT, AUDIO_READ(REG_SPU_CH_EVENT) | EV_USR_EN);
}
if (u32InterruptFlag & DRVSPU_SILENT_INT)
{

AUDIO_WRITE(REG_SPU_CH_EVENT, AUDIO_READ(REG_SPU_CH_EVENT) | EV_SLN_EN);
}
/* ...a few more times... */
/* ... */
return E_SUCCESS;

}
else

return E_DRVSPU_WRONG_CHANNEL;
}

Kernel code quality — example 5

arch/arm/mach-w55fa92/include/mach/w55fa92_gpio.h:
static inline int w55fa92_gpio_configure(int group, int num) {
/* ... */

case GPIO_GROUP_B:
if(num <= 7)
writel(readl(REG_GPBFUN0) &~ (0xF << (num<<2)), REG_GPBFUN0);

else
writel(readl(REG_GPBFUN1) &~ (0xF << ((num%8)<<2)), REG_GPBFUN1);

break;

case GPIO_GROUP_C:
if(num <= 7)
writel(readl(REG_GPCFUN0) &~ (0xF << (num<<2)), REG_GPCFUN0);

else
writel(readl(REG_GPCFUN1) &~ (0xF << ((num%8)<<2)), REG_GPCFUN1);

break;
/* ...similarly fo other GPIO ports... */

}

• A little refactoring would help

Toolchain

Vendor toolchain

• The BSP provides a toolchain.
• Why?

• What’s inside
• gcc 4.2.1 (July 2007)

• No C++11 support
• gcc 4.2.x got fixes until 4.2.4 (May 2008)

• uClibc 0.9.29 (2007)
• What if I need glibc or musl?
• Bugfixes and improvements in later versions?

• A few other libraries (libcurl, libpng …)
• A hand-crafted script to install it at a hard-coded location

Toolchain selection

• Don’t use the provided toolchain
• You could use a pre-built toolchain

• If it has been built with kernel headers <= 2.6.35
• So it’s probably quite old itself

• Build your own
• crosstool-NG, Buildroot, Openembedded…

Using an old gcc — an example

A C++ program using libconfuse 3.0

#include <confuse.h>
//...
cfg_opt_t opts[] =
{

CFG_STR("my-param", "defval", CFGF_NONE),
CFG_END()

};

With gcc <= 4.8 fails building due to designated initializers not being implemented:

error: expected primary-expression before '.' token

	Introduction
	My Quest
	Documentation
	Linux kernel
	Booting
	Tools
	Customer support
	Concluding remarks
	Appendix
	Extra Slides
	Kernel code quality — Extra examples
	Toolchain

