SONY

~ On AW

Measuring Function Duration
with Ftrace

By Tim Bird
Sony Corporation of America
<tim.bird (at) am.sony.com>

SONY
Outline

* Introduction to Ftrace
* Adding function graph tracing to ARM

* Duration Filtering
- Trace coverage duration analysis

* Measuring kernel boot
* Post-trace analysis tools
* Performance impact

* Resources

ntroduction to Ftrace

What is Ftrace?

Overview of operation

- Instrumentation

- Runtime operation
- Data capture

- Trace log output

Function duration tracing

SONY

SONY
What Is Ftrace?

* Ftrace Is the first generic tracing system to
get mainlined (Hurray!!)
- Mainlined in 2.6.27
- Derived from RT-preempt latency tracer

* Provides a generic framework for tracing
- Infrastructure for defining tracepoints

- Abillity to register different kinds of tracers

- Specialized data structure (ring buffer) for
trace data storage

SONY.
Overview of FTrace Operation

* |[nstrumentation
- Explicit
* Tracepoints defined by declaration
* Calls to trace handler written in source code
- Implicit
* Automatically inserted by compiler
- Uses gcc ‘-pg’ option
* Inserts call to ‘mcount’ in each function prologue

* Easy to maintain — no source code modifications
* Only practical way to maintain 20,000+ tracepoints

SONY
mcount Routine

* ‘mcount’ is called by every kernel function
- Except inlines and a few special functions

* Must be a low-overhead routine

* Incompatible with some compiler optimizations
- E.g. cannot omit frame-pointers on ARM
- Compiler disables some optimizations automatically

- Works with ARM EABI

- Analysis of assembly indicates that mcount callers
have well-defined frames

* Misc note:

- New mcount routine (_gnu_mcount) is coming

Code to Call mcount

SONY.

00000570 <sys_sync>:

570:
574:
578:

S57c:
580:
584:
588:

ela@co0d
€92dd800
e24ch004

€e3a00001
ebffffao
€3a00000
€89da800

mov 1p, Sp
stmdb sp!, {fp, ip,
sub fp, 1ip, #4 ; 0x4

1r,

mov rO, #1 ; 0Ox1
bl 408 <do_sync>
mov r@, #0 , Ox0

ldmia sp, {fp, sp, pc}

pc}

00000570 <sys_sync>:

570:
574.
578:
57c:
580:
584:
588:
58c:
590:
594:

elaOcO00d
€92dd800
e24ch0o4
ela0c00e
ebfffffe
00000028
e3a00001
ebffffod
€3a00000
€89da800

mov 1p, Sp

stmdb sp!, {fp, 1ip,
sub fp, ip, #4 ; 0x4
mov 1ip, 1lr

bl © <mcount>

andeq ro0, r0, r8, lsr #32
mov r@, #1 ; 0Ox1
bl 408 <do_sync>
mov r@, #0 , Ox0
ldmia sp, {fp, sp,

lr, pc}

pc}

SONY.
Trace setup at run-time

* Pseudo-files in debugfs
- e.g. mount debugfs —t debugfs /debug

* Select a tracer
- e.g. echo function_duration >current_tracer
* Set tracing parameters

- e.g. echo 100 >tracing_threshhold
- echo duration-proc >trace_options

SONY.
Trace Data Capture

* Ring Buffer

- Specialized structure for collecting trace data
* Manages buffer as list of pages

- Latest version is lockless for writing
* Ability to atomically reserve space for an event

- Automatic timestamp management

- Per-cpu buffers

* Avoids requiring cross-CPU synchronization

* Also avoids cache collisions
- Very important for performance

SONY.
Trace Output

* Output Is human readable text
- No special tools required to collect trace data
* Examples:

- cat trace
* Returns EOF at end of trace data
- cat trace _pipe | grep foo >log.txt

* Blocks at end of trace data

* Quick enable/disable

- echo 0 >tracing_enabled

Ring Buffer Operations

* ring_buffer lock reserve
- Atomically reserve space in buffer

* ring_buffer _event data
- Get pointer to place to fill with data

* ring_buffer _unlock _commit
- Commit event data

* ring_buffer discard commit

- Discard reserved data space

SONY.

SONY
Function duration tracing

* Traces function entry and exit
* What is it good for?

- See relationship between functions

* Is a GREAT way to learn about kernel
* Find unexpected/abnormal code paths

- Measure function duration
* Find long latencies and performance problems

* But, the -pg option only instruments
function entry

SONY.
Hooking function exit

* Normal ‘function’ tracer just traces function
entry capture

* To capture function exit, a trampoline Is
used

— mcount:

* Saves real return address

* Replaces return address with address of
trampoline

- |n exit tracer, return to the real return address

SONY

lagram of Trampoline

Thead info
struct ret_stack

l mcount caller 1

Function ! caller 2
Func entry
Tracer

\ Func exit

Tracer

Caller

Stack

ret addr

SONY
Why Filter by Duration?

* To extend the capture duration time

- By reducing, at runtime, the amount of trace
data

- Without a duration filter, you can only capture
about 0.4 seconds worth of data

* To see only long-duration functions

- When looking for long-lasting functions, you
don’t need to see the short ones (in most
cases)

SONY
Filtering by Duration - first try

* Added duration filter to 'function_graph' tracer

* Method:

- Compare duration to threshhold
- Discard function entry and exit events

* |ts easy to discard exit event
- Just don’t commit data

* Trickier to discard entry event

- ring_buffer_event_discard() converts event to
padding If subsequent events have been
committed to buffer

* Wastes a lot of space
* Severely constrains the time coverage for a trace

SONY
Filtering by Duration - second try

* Created new 'function_duration' tracer

* Method:

- Don't save function entries to trace log at all
* Only save call time on function return stack
- At function exit, compare duration to threshhold

- Omit exit entry events for short duration
functions

* Results in simpler, and faster code

* Only issue is that log Is displayed in order of
function exit (not function entry)

- Can be solved with a simple sort on trace output

SONY

Trace time coverage:
graph vs duration tracer

Tracer Duration Total Time Trace Projected
Filter Function Covered Event Trace Time
Value Count by Trace Count Coverage
Graph 0 |3.295M 0.39 s 27316 0.39 s
Graph 1000 | 3.310M 1.29 s 26630 1.39s
Graph 100000 | 3.309M 1.34 s 26438 1.34 s
Duration 0|2.906M 0.38 s 27597 0.38 s
Duration 1000 | 2.788M 21.70 s T 3943 154.00 s
Duration 100000 | 2.795M 21.31s T 208 2868.00 s
T The test finished without filling the buffer. = Estimate

SONY.
Example of Use

$ mount debugfs -t debugfs /debug

$ cd /debug/tracing

$ cat available_tracers

function_graph function_duration function sched_switch nop
$ echo 0 >tracing_enabled

$ echo 100 >tracing_thresh

$ echo function_duration >current_tracer

$ echo 1 >tracing_enabled ; do \

1s /bin | sed s/a/z/g ; done ; echo 0@ >tracing_enabled

e

echo duration-proc >trace_options
$ cat trace >/tmp/trace.txt

$ cat /tmp/trace.txt | sort -k3 > /tmp/trace.txt.sorted

SONY.
Function Duration Results (sorted)

tracer: function duration

#

CPU TASK/PID CALLTIME DURATION FUNCTION CALLS

| | | | . I

0) sed-562 | 502.854252393 | ! 436.833 us | bprm mm_init

0) sed-562 | 502.854254893 | ! 321.500 us | mm_alloc

0) sed-562 | 502.854270893 | ! 296.500 us | mm_init

0) sed-562 | 502.854279393 | ! 266.166 us | get _pgd slow

0) sed-562 | 502.854744059 | ! 229.500 us | prepare_binprm

0) sed-562 | 502.854765393 | ! 198.666 us | kernel read

0) sed-562 | 502.854769226 | ! 183.333 us | vis read

0) sed-562 | 502.854780393 | ! 142.000 us | do_sync_read

0) sed-562 | 502.854785559 | ! 120.667 us | nfs file read

0) sed-562 | 502.854982393 | ! 538.000 us | copy strings kernel

0) sed-562 | 502.854985726 | ! 521.667 us | copy_strings

0) sed-562 | 502.854993893 | ! 470.000 us | get_arg page

0) sed-562 | 502.854997226 | ! 455.500 us | get user pages

0) sed-562 | 502.855000059 | ! 421.667 us | __get _user pages
0) sed-562 | 502.855031393 | ! 285.666 us | handle mm fault
0) sed-562 | 502.855037726 | ! 101.833 us | __pte _alloc

SONY
Measuring kernel boot

* Can start tracer early in boot sequence

* Use “ftrace=function_duration” on kernel
command line

- Can specify “tracing_thresh=<value>”"

* Tracer is initialized after kernel core (timers,
memory, interrupts), but before all initcalls

- On my hardware, tracer starts about 50
milliseconds after start _kernel()

* Had to restore instrumentation to functions In
_Init segment

* Need to stop trace after point of interest

| | SONY
Introducing a stop trigger

* Use “trace_stop fn=<func_name>" on
kernel command line

* Trace stops on ENTRY to named function

* To use, figure out a fairly unique function,
which runs immediately after the area of
Interest

* An Initcall works very wel
- |Initcall functions have unigue names in kernel

SONY
Example of early boot trace

* To trace most of kernel boot:

- Add this to the kernel command line:

* “ftrace=function_duration tracing_thresh=200
trace stop fn=run_init_process”

- If the trace doesn't cover the whole boot,
Increase tracing_thresh and try again

* To trace an individual initcall:

- Find initcall following the one you are
Interested In
* Can use Initcall_debug on kernel command line
* ex: pty_init follows tty_init
- Kernel command line:
* “ftrace=function_duration trace_stop fn=pty_init”

SONY.
Post-trace analysis

* fdd tool is provided to analyze data

* What fdd shows:

- function counts, total time, average duration

- sub-routine with the longest duration, how many times
It was called

- Local time = total time minus sub-routine total time
* Is approximately the cost of the local execution of a function

* Notes:
- Total time may be wrong if process is scheduled out
or If a filter was active

* May need an option to subtract time that function was
scheduled out

- You can filter, sort, select output columns,etc.

SONY.
fdd Output

$ fdd /tmp/trace.txt -n 15

Function Count Time Average Local
schedule 59 1497735270 25385343 1476642939
sys_write 56 1373722663 24530761 2892665
vfs_write 56 1367969833 24428032 3473173
tty_write 54 1342476332 24860672 1212301170
do_path_lookup 95 1076524931 11331841 34682198
__link_path_walk 99 1051351737 10619714 6702507
rpc_call_sync 87 103321106085 11875989 1700178
path_walk 94 1019263902 10843233 3425163
rpc_run_task 87 960080412 11035407 2292360
rpc_execute 87 936049887 10759194 2316635
__rpc_execute 87 932779083 10721598 11383353
do_lookup 191 875826405 4585478 9510659
call_transmit 100 785408085 7854080 5871339
__nfs_revalidate_inode 38 696216223 18321479 1652173
nfs_proc_getattr 38 690552053 18172422 1234634

SONY
Performance issues

* Overhead of tracing can be big
- Average function duration = 3.22 us
- Overhead = 11.4 microseconds per function

* Use a CPU-bound test to measure
overhead

- “find /sys >/dev/null”

- With an 1/0-bound test (or a real-workload),
the ratio of overhead to average function
duration should be lower

* With ftrace compiled into kernel, but the
'NOP' tracer selected, the overhead in my
test was about 12%

Overhead Measurements

SONY.

Tracer status Elapsed Function Time per | Overhead per
time count function function
TRACE=n 8.85 s 2.751M * 3.22 us -
Tracer=nop 9.94 s 2.757M * 3.61 us 0.39 us
Tracer=duration, 21.57 s 2.816M 7.66 us 4.44 us
enabled=0
Tracer=duration, 42.55 s 2911M 14.62 us 11.40 us
thresh=0
thresh=1 42.80 s 2.923M 14.64 us 11.42 us
thresh=10 30.87 s 2.850M 10.83 us 7.61 us
thresh-=100 24.58 s 2.824M 8.70 us 5.48 us
thresh=1000 21.40 s 2.802M 7.64 us 4.42 us
thresh=1000000 21.43 s 2.803M 7.64 us 4.42 us

* = estimated

SONY.
Roadmap and future work

* Mainline try 2

- Patches:

* ARM function graph assembly support
* function_duration tracer
* changes to ftrace for use at boot time

* Need to use functionality to improve
bootup time

- Have already identified a few problems

* call_ usermode helper (may already be done)
* ip_auto_config

SONY
References

* Ftrace tutorial at OLS 2008

- http://people.redhat.com/srostedt/ftrace-tutorial.odp

- Video: http://free-electrons.com/pub/video/2008/ols/

0ls2008-steven-rostedt-ftrace.ogg

* “The world of Ftrace” at Spring 2009 LF
Collaboration Summit

- http://people.redhat.com/srostedt/ftrace-world.odp

* Patches and tools for this talk
- http://elinux.org/Ftrace_Function_Graph_ ARM

SONY

Questions & Answers

