Instant startup for application using reduced
relocation time and rearranged functions

April 15, 2008

Samsung Electronics S/W Lab
Minchan Kim<mc4u.kim@samsung.com>
Oleksiy Kokachev<o.kokachev@samsung.com>

1/25

C_ontents Punmsunag
9 problem description ‘

Q Shared library relocation procedure

9 \What is DDLink?

e DDLiInk effectiveness measurement

e What is Functions Reordering ?

Functions Reordering effectiveness measurement

2/25

Bootup latency

o The bootup time is always a hot issue in embedded wrld‘

Q We had applied many well-known kernel speedup techniques
Ex) Disable Console, Preset LPZ, Kernel XIP, ...

O bootloader

B kernel

Oinit process

Orc script

B main app loading
@ global Constructor

Ocomplete |
B complete Il

Relocation time and excessive number of page faults are the key
factors affecting application startup time

Relocation Time - DDLink
Page Fault - Functions Reordering

3/25

Application execution procedure

2 do_execve kernel function overview ‘
- Determines the type of executable (static or shared) by ELF
parsing
. In case of shared executable - transfers control to dynamic loader

Dynamic loader overview

. Loads executable program segments

. Loads all libraries needed to execute the program
. Relocates relocate entry of all shared library

. Calls init function of shared libraries

. Transfers control to libc

4/25

Why do we use shared libraries ?

. Advantages

* The executable is smaller (it does not include the library
Information explicitly),

* When the library is changed, the code thft refirences does not

Weigdens & erave. whole librar

* The executable accesses shared library at run time; therefore,

multiple application%@ ?ﬂé@egame shared library at the

same time (saves memory

e Disadvantages
* Need to load shared libraries
* Need to resolve addresses
* The possible lack of dynamic library
* The possibility of library version mismatch

9/25

DDLink (Deterministic Dynamic Linker)

 Goal ‘
- To reduce relocation processing time

e Approach

- Many embedded systems have the same startup sequence:

. Hardware reset + bootloader + kernel execution + root file system mount +
init + app execution

. So, we can find the shared library mapping base address, thus we
can avoid resolving address

6/25

What i1s GOT and PLT in ELF ?

- GOT and PLT are key for DDLink

e GOT and PLT are parts of ELF

Q PLT(Procedure Linkage Table)

- Redirects position-independent function calls to absolute
locations

© GOT(Global Offset Table)

- Redirects position-independent address calculations to absolute
locations

1125

Detail of Lazy Binding

call xxx_func();
xxx_func absolute -
addr write
. e call xxx_func();
ynamic loaaer
0x80000000 0%22103200
_dl_runtime_resolve
{
xxx_func:
push ebp
PLT
}

0x80000000

symbol table /
r A

0x14000000

relocation offset
push

xxx_func

8/25

DDLink Procedure

e Phase 1 - Preprocessing execution program to get runtime
profiling data

- Mark shared libraries to present that this library will be used by
DDLink

. Execute target program without lazy binding

- Remains profiling data which include GOT entries resolved by our
dynamic loader

e Phase 2 - Postprocessing static binary images with profiling

data
- Write address resolved to execution images’s GOT section

9/25

DDLInk Procedure(cont.)

Relocation
runtime Processing
——— File System ——— | — virtual memory
i
CODE | CODE ..
o []
DATA _- exe&utl bn | DATA _ DATA < o
GOT Ilj GOT |—> GOT 0x3
Table . Table Table Ox4
| X 0x5
N : N N 0x6
N I b N 0x7
I
executable image I process process

Post processing /

. main
- recompilef--------- Y — — — —~ ~~ " "~~~ : -1
Pre processing B time PrOC(_assmg
skip!!
& File System ile System ! virtual memory — Iy p
| o
: _ °
CODE gynanfic CODE .
5 loadpr
DATA | _~ 3 ong 0 ATA | : - o
GOT 00¢€ O C OO 0 &2l 0x3 GOT 0x3
Table | Ox4 Table 0x4
~ 1 5 | AN gxg N 8)(2
X X X
. E ox7_| I S ox7 S JToxr
executable image executable image | process process
1

10/25

DDLink supports two modes Pansuncg

2 Libraries are used by many program concurrently ' "
- It can change library’s base address in each process address space

e File Read Mode
- Resolved address is recorded to profile data file

.- Just read profile data when dynamic loader is processing
relocation but avoiding relocation which consume much time

. Generally, this mode is applied to libraries which are shared
among many processes

« Overhead of file I/0

e Relocation Skip Mode
- Resolved address is recorded to images
. Dynamic loader never do any operations related to relocation

. Generally, this mode is applied to proprietary libraries of the
application
- Very fast

11/25

DDLink Package

g ..-....,..-.:.. | [P [
UIIUL, Uyl altiic 1oauci
» Handles relocation according to DDLink mode properly ‘

9 DDLink utilities

. DDLInk mode marker
. File Read Mode
. Relocation Skip Mode

. DDLink GOT writer

. Record GOT table with relocation result which are obtained with profiling

12/25

DDLINk Issue Pnmsunad
Q

DDLink performance factor ‘

. Depends on filesystem read overhead
. Compression ratio (In case of Compression File System)
. Flash speed

. Number of symbols

13/25

DDLink Issue(cont.) Pansuncg
)

Read Ahead ‘

. Optimization method based on working set locality

. Read/Write VS Disk Seek (Cylinder, Head)
. Hard disk seek time is very slow

@ Most Embedded Devices use the flash memory
. Flash memory seek time is likely to constant

e Nowadays, ReadAhead have become obstacle against
startup of application in Embedded System

14/25

ReadAhead Issue(cont.)

- ReadAhead Optimization

*
Readahead ON 1k FS Block Size {default}, Readahead ON, 4k conpression size
18660 | | , ,
BHLA —
16000 BHL5

L 14668 RHLE 1 —

g BHL7 C—— |

'E 12668 BHLE

2 10000 .

& seea . _ -

t; -

r.i"'; 68649 -
4080 I - o
2008 .) - -

8 | |
6 i] 18
Tine, 5
* Readahead OFF
1k F5 Block 5ize {default}), Readahead OFF, 4k conpression size
18080 | , ,
BHLA —1
16600 - BHLS —— |

e 140080 BHLE 1 4

g BHL7 —— |

'E 12680 BHLE

g 10608 -- =

E #eo8 ~ - -z _ N

5 6oeo TTon EE T RET o TL L T

@ A =R
4008 - R T

= [-
2008 . O g -
gk | |
B 8 18

code executed more quickly 11!

15/25

Real-Target measurement

9 Environment "

» MIPS(500MHz), DRAM(128M), Flash (64M)
e DDLiInk configuration
* Glibc Libraries : File Read Mode
* Proprietary Libraries : Relocation Skip Mode
The number of shared libraries : 12
e The number of symbols : around 200,000

9 ReadAhead Off

250 msec 1900 msec 300 msec

shared library loding time
shared library relocation time
shared library init time

After

250 msec 300 msec 300 msec

16/25

Functions reordering

® Problem definition | ‘
+ In large applications, consisting of big number of object files,

functions used during system startup are spread over the
application’s binary

+ During execution application file is mapped to memory and all
reads requests from it are performed on a page size boundary

+ To load one small function (i.e. 100 bytes in size) which are not
currently in page cache, one page_ fault should occur and whole
page (4k in size) containing this function should be loaded into RAM
from flash storage device

+ Nowadays, flash memory is relatively slow, so reducing the amount
of data loaded could reduce booting time

17/25

Functions reordering (cont.)

® Proposed soiution ‘
« The main idea is to place all the functions used during system

startup altogether, one-by-one in their execution order
@ Main benefits
« Reduced amount of data read from slow flash storage device
« Reduced number of page faults

+ As a result - reduced booting time
Before After

18/25

Functions reordering (cont.)

® Step-by-step description “
» Step 1: Compile every source file with instrumentation support

(-finstrument-function GCC option) and link the final binary with
libpcprofile.so shared library

+ Step 2: Execute application on target and gather the
Instrumentation data

« Step 3: Process instrumentation data:
. Remove duplicate function calls
. Transform function addresses to function names
. Generate linker script

+ Step 4: Finally recompile every source file with -ffunction-sections
GCC option and link the final binary in accordance with linker
script

19/25

Functions reordering (cont.)

*)

Test program ‘
. Calls of different 1000 functions among 10,000 functions

- Function size is very small
It mean there are many functions in one page

Booting time reduction

« Around 500msec
Before : 657msec After : 157msec

. 4500 L
4000 4

3500

3000

inode offset
inode offzet
[]]
[} n
= =
(] (]

1500

1000

s00

a _“/
a
0 1000 5000 2000 4000 000 0 200 400 E00 a0o 1000 1200
) time
time

20/25

Functions reordering (cont.)

2 Real-Target results

- The exact time reduction depends on the system, CPU l
architecture, filesystem, application size and other factors

. Test system description:
. 500 Mhz MIPS CPU
. SquashFsS filesystem (64k block size)
. Kernel: 2.6.18

9 Booting time data:
. Origin : 8.214 sec

. Optimized : 7.496 sec

Benefit : 0.718 sec

21/25

Summary

afte

befo

1

O bootloader

HE kernel

Oinit process

Orc script
B main app loading

O Global Constructor

Ocomplete |

B complete

0 2,000 4,000 6,000 8,000 10,000 12,000

22/25

Summary (cont.)

“ DDLink ‘
. Advantages
- DDLink is a simple solution to reduce relocation time

+ Image size is never increased

Disadvantages
- Has inconvenient profiling phase
. Doesn’t support general case
» Doesn’t support graceful exit

9 Functions Reordering

Advantages
Reduced amount of data read from slow flash storage device
Reduced number of page faults

. Disadvantages
A little complicated profiling and data analysis step

23/25

The End Pnmsund
Q@ Questions?? ‘

Thank You.
Q&A

24/25

