
Instant startup for application using reduced Instant startup for application using reduced Instant startup for application using reduced
relocation time and rearranged functions

Instant startup for application using reduced
relocation time and rearranged functions

April 15, 2008p ,

Samsung Electronics S/W Lab
Mi h Ki 4 ki Minchan Kim<mc4u.kim@samsung.com>

Oleksiy Kokachev<o.kokachev@samsung.com>

1/25

ContentsContents

Problem description

Shared library relocation procedureShared library relocation procedure

What is DDLink?What is DDLink?

DDLink effectiveness measurement

What is Functions Reordering ?

Functions Reordering effectiveness measurement

2/25

Bootup latencyBootup latency

The bootup time is always a hot issue in embedded world

We had applied many well known kernel speedup techniquesWe had applied many well-known kernel speedup techniques
Ex) Disable Console, Preset LPZ, Kernel XIP, ...

bootloaderbootloader

kernel

init process

rc script

main app loadingpp g

global Constructor

complete I

complete II

0 2,000 4,000 6,000 8,000 10,000 12,000

R l ti ti d i b f g f lt th k Relocation time and excessive number of page faults are the key
factors affecting application startup time

Relocation Time - DDLink

3/25

Page Fault - Functions Reordering

Application execution procedureApplication execution procedure

do_execve kernel function overview
Determines the type of executable (static or shared) by ELF
parsing parsing
In case of shared executable - transfers control to dynamic loader

Dynamic loader overview
Loads executable program segments
Loads all libraries needed to execute the programLoads all libraries needed to execute the program
Relocates relocate entry of all shared library
Calls init function of shared libraries
Transfers control to libc

4/25

Why do we use shared libraries ?Why do we use shared libraries ?

Advantages
The executable is smaller (it does not include the library The executable is smaller (it does not include the library
information explicitly),
When the library is changed, the code that references does not

W d ’t h h l lib usually need to be recompiled.
The executable accesses shared library at run time; therefore,
multiple applications can access the same shared library at the

We don’t have whole library
sourcesp pp y

same time (saves memory)

Di d t

sources

Disadvantages
Need to load shared libraries
Need to resolve addresses Need to resolve addresses
The possible lack of dynamic library
The possibility of library version mismatch

5/25

DDLink (Deterministic Dynamic Linker) DDLink (Deterministic Dynamic Linker)

Goal
To reduce relocation processing time

Approach
Many embedded systems have the same startup sequence:y y p q

Hardware reset + bootloader + kernel execution + root file system mount +
init + app execution

So, we can find the shared library mapping base address, thus we
can avoid resolving address

6/25

What is GOT and PLT in ELF ? What is GOT and PLT in ELF ?

GOT and PLT are key for DDLink

GOT and PLT are parts of ELF

PLT(Procedure Linkage Table)(g)
Redirects position-independent function calls to absolute
locations

GOT(Global Offset Table)
Redirects position-independent address calculations to absolute Redirects position independent address calculations to absolute
locations

7/25

Detail of Lazy BindingDetail of Lazy Binding

APP
call xxx_func();

…

…

APP

call xxx_func();

..

GOT

0x140000000x2a103200

xxx_func absolute
addr write

dynamic loader

0x80000000 :

..

..

xxx_func:

_dl_runtime_resolve

{

…

0x80000000 :

0x2a103200 :

PLT

push ebp

…

0x80000000
}

0x8

relocation offset
push

xxx_func

symbol table

0x14000000 :

push

8/25

DDLink ProcedureDDLink Procedure

Phase 1 – Preprocessing execution program to get runtime
profiling dataprofiling data

Mark shared libraries to present that this library will be used by
DDLink
Execute target program without lazy binding
Remains profiling data which include GOT entries resolved by our
dynamic loaderdynamic loader

Phase 2 – Postprocessing static binary images with profiling
data

Write address resolved to execution images’s GOT section

9/25

DDLink Procedure(cont.) DDLink Procedure(cont.)

virtual memory
runtime

File System virtual memory

Relocation
Processing

Hmm.. It takes so long time

GOT
Table

DATA

CODE

0x2
0x1

0x3
0x4
0x5

GOT
Table

DATA

CODE

execution

dynamic
loader

GOT
Table

DATA

CODE

executable image

0x6
0x7

process process

Relocation

virtual memoryFile System

runtime
virtual memory

compile main

File System

Post processing /
Pre processing

Relocation
Processing

skip!!

GOT
Table

DATA

CODE execution

0x2
0x1

0x3
0x4

GOT
Table

DATA

CODE

ddlink
0x2
0x1

0x3
0x4

GOT
Table

DATA

CODEdynamic
loader

0x2
0x1

0x3
0x4

GOT
Table

DATA

CODE

It takes long time but
doesn’t affect booting time

executable image

Table

process

0x5
0x6
0x7

Table

process

0x4
0x5
0x6
0x7

Table
0x5
0x6
0x7

executable image

10/25

DDLink supports two modesDDLink supports two modes

Libraries are used by many program concurrently
It can change library’s base address in each process address space

File Read ModeFile Read Mode
Resolved address is recorded to profile data file
Just read profile data when dynamic loader is processing p y p g
relocation but avoiding relocation which consume much time
Generally, this mode is applied to libraries which are shared
among many processesamong many processes
Overhead of file I/O

Relocation Skip Modep
Resolved address is recorded to images
Dynamic loader never do any operations related to relocation
G ll hi d i li d i lib i f h Generally, this mode is applied to proprietary libraries of the
application
Very fast

11/25

y

DDLink PackageDDLink Package

Glibc dynamic loaderGlibc dynamic loader
Handles relocation according to DDLink mode properly

DDLink utilities
DDLink mode marker

File Read ModeFile Read Mode
Relocation Skip Mode

DDLink GOT writerDDLink GOT writer
Record GOT table with relocation result which are obtained with profiling

12/25

DDLink Issue DDLink Issue

DDLink performance factor

Depends on filesystem read overheadDepends on filesystem read overhead

Compression ratio (In case of Compression File System)Compression ratio (In case of Compression File System)

Flash speedp

Number of symbols

13/25

DDLink Issue(cont.) DDLink Issue(cont.)

Read Ahead
Optimization method based on working set locality

Read/Write VS Disk Seek (Cylinder, Head)
Hard disk seek time is very slowHard disk seek time is very slow

Most Embedded Devices use the flash memoryMost Embedded Devices use the flash memory
Flash memory seek time is likely to constant

Nowadays, ReadAhead have become obstacle against
startup of application in Embedded System

14/25

ReadAhead Issue(cont.) ReadAhead Issue(cont.)

R dAh d O ti i tiReadAhead Optimization

* Readahead ON

* Readahead OFF

15/25
code executed more quickly !!!

Real-Target measurementReal-Target measurement

Environment
MIPS(500MHz) , DRAM(128M), Flash (64M)

DDLink configurationDDLink configuration
Glibc Libraries : File Read Mode
Proprietary Libraries : Relocation Skip Modep y p

The number of shared libraries : 12
The number of symbols : around 200,000
ReadAhead Off

Before
250 msec 1900 msec 300 msec

Before

250 msec 300 msec300 msec

After

shared library loding time
shared library relocation time
shared library init time

16/25

250 msec 300 msec300 msec

Functions reorderingFunctions reordering

P bl d fi itiProblem definition
In large applications, consisting of big number of object files,
functions used during system startup are spread over the g y p p
application’s binary

During execution application file is mapped to memory and all During execution application file is mapped to memory and all
reads requests from it are performed on a page size boundary

To load one small function (i.e. 100 bytes in size) which are not
currently in page cache, one page_fault should occur and whole
page (4k in size) containing this function should be loaded into RAM p g () g
from flash storage device

Nowadays flash memory is relatively slow so reducing the amount Nowadays, flash memory is relatively slow, so reducing the amount
of data loaded could reduce booting time

17/25

Functions reordering (cont.) Functions reordering (cont.)

P d l tiProposed solution
The main idea is to place all the functions used during system
startup altogether, one-by-one in their execution orderp g , y

Main benefits
Reduced amount of data read from slow flash storage device
R d d b f f lReduced number of page_faults
As a result – reduced booting time

Before After

18/25

Functions reordering (cont.) Functions reordering (cont.)

St b t d i tiStep-by-step description
Step 1: Compile every source file with instrumentation support
(-finstrument-function GCC option) and link the final binary with (p) y
libpcprofile.so shared library
Step 2: Execute application on target and gather the
instrumentation datainstrumentation data
Step 3: Process instrumentation data:

Remove duplicate function calls
Transform function addresses to function names
Generate linker script

Step 4: Finally recompile every source file with -ffunction-sections Step 4: Finally recompile every source file with ffunction sections
GCC option and link the final binary in accordance with linker
script

19/25

Functions reordering (cont.) Functions reordering (cont.)

Test program
Calls of different 1000 functions among 10,000 functions
Function size is very smallFunction size is very small

It mean there are many functions in one page

Booting time reduction
Around 500msec

Before : 657msec After : 157msec

20/25

Functions reordering (cont.) Functions reordering (cont.)

Real-Target results
The exact time reduction depends on the system, CPU
architecture filesystem application size and other factorsarchitecture, filesystem, application size and other factors
Test system description:

500 Mhz MIPS CPU
S hFS fil t (64k bl k i)SquashFS filesystem (64k block size)
Kernel: 2.6.18

B ti ti d tBooting time data:
Origin : 8.214 sec
Optimized : 7 496 secOptimized : 7.496 sec
Benefit : 0.718 sec

21/25

SummarySummary

bootloader

kernelkernel

init process

rc script

i l di

after

main app loading

Global Constructor

complete I

before

0 2,000 4,000 6,000 8,000 10,000 12,000

complete II
before

22/25

Summary (cont.)Summary (cont.)

DDLink
Advantages

DDLink is a simple solution to reduce relocation time DDLink is a simple solution to reduce relocation time
Image size is never increased

Disadvantages
Has inconvenient profiling phaseHas inconvenient profiling phase
Doesn’t support general case
Doesn’t support graceful exit

Functions Reordering
Advantages

Reduced amount of data read from slow flash storage device
Reduced number of page faultsp g

Disadvantages
A little complicated profiling and data analysis step

23/25

A little complicated profiling and data analysis step

The EndThe End

Questions??

Thank You.
Q&A

24/25

