
1

Optimizing Browsing Experience

Rodolph Perfetta

ARM



2

The Challenge

 ARM based devices can offer

 Better battery life

 Slimmer form factor

 Lower cost

 But

 Software is primarily written for desktop platforms

 Need to be optimized for ARM and mobile environment



3

Agenda

 Javascript Engine - Today

 Javascript Engine - Tomorrow

 Optimizations and Architecture

 Memory and Power

 ARM CPU and Memory Architecture

 Profiling

 Software limitations



4

JavaScript Engine - Today

 Javascript VM are in their infancy when it comes to
performance optimizations

 FireFox 3, Safari 3, IE7, Opera

 Bytecode interpreter

 Syntax tree walker

 Chrome 1

 JIT to native code

 While optimizations are nice to have on powerful hardware,
they are critical on small devices



5

JavaScript Engine - Tomorrow

 Google Chrome

 All the code is compiled before being run

 Safari 4.0 Beta

 Mixed interpreted/compiled code

 Use JIT for RegExp as well

 FireFox 3.1 Beta

 Interpret, trace then compile

 Aggressive type specialisation

 There are more than one way to improve performance

 some ways are more “embedded friendly”

 Think of memory

 Think of power



6

JavaScript Engine - Tomorrow

 SunSpider benchmark

 Performance normalised
to FireFox 3

 Higher is better

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

FF
3

FF
3.

1

W
eb

K
it

C
hr

om
e

Sunspider



7

Opt: Polymorphic Inline Cache

 Used by V8 (Chrome) and SquirrelFishExtreme (Safari 4)

 Assign “types” to object based on their fields definition

 On field access:

 Cache first used offset and corresponding type

 If the next field access is on the same type of object then reused
cached offset

 If not redo lookup and update caches

 Implementation

 Offset and type are in-lined in the code

 Every cache miss will trigger a rewrite of native code

 On ARM this will require a cache sync

 Cache sync operation is not free, if the cache hit rate is not high it won’t
be worth the effort.



8

Opt: Tracing and Type Specialisation

 Used by TraceMonkey (FireFox 3.1)

 Interpret the code

 Record exact types used

 When a loop is detected generate code with gathered type information

 If types change, retrace, recompile

 Code is generated in buffer of 4k, no requirements for the buffer to be
contiguous

 Performance can already reach non optimized C code

 Potential to be memory friendly:

 Only compile what is run

 chunks can be deallocated



9

Memory and Power, Power and Memory

 Memory is key to performance on ARM systems

 Limited amount: Nokia N810 has 128M

 Less memory accessed/used usually means:

 faster applications

 cheaper devices

 better battery life

 Unused CPU cycle are not free on a mobile device

 While idle an ARM CPU will consume 200-300 times less power

 Keeping the CPU alive is costly

 The faster your task run the more battery you get



10

Memory Footprint

 Do you know how much memory your application uses?

 Code footprint

 Data footprint

 OS instrumentation

 patch to the linux kernel

 Dynamic instrumentations

 Malloc/new instrumentation

 simpler

 good enough to start with

 There are multiple malloc libraries out there



11

ARM CPU and Memory Architecture

 Outside L1/L2
caches it is different
for every licensee

 Do not assume
anything about RAM
(e.g. latencies)

 Instruction and Data
cache need to be
managed manually

 CortexA have L2

x1-4

x1-4

ARMv6

ARMv7-Cortex

ARM1176JZ(F)-S

ARM1136J(F)-S

Cortex-A9

Cortex-A8

ARM11 MPCore



12

On Target Profiling - Scaling down

 Profiling/tuning on a
different architecture has
little value

 E.g looking up a 32bits key
in a table

 Sparse (key every 8 words)

 Dense

 Searching 30000 keys

 Macbook (Core 2 Duo)

 CortexA8 board

 Dense speed up vs sparse 0

2

4

6

8

10

12

14

16

18

20

Core 2 CortexA8

dense/sparse



13

Off Target Profiling - Scaling up

 Your target may not always
be available

 Try scaling up on a more
powerful platform
 Will not give you a realistic

profile

 Can help spotting potential
issues

 Ex matrix multiplication
 Row first

 Column first

 Speed difference with
various matrix sizes
 Macbook (Core 2 Duo)

 CortexA8 board

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Core 2 200 A8 200 Core 2

1500

row col



14

Choose the right ISA

 ARM: Full speed, Full size

 Thumb: 20% smaller, 20% slower

 Thumb was design as a static compiler target

 Thumb is useful for system with 16bits memory

 Thumb is not JIT friendly (non consistent constraints, small range for
branches, less registers etc)

 Thumb2: Full speed, 20% smaller

 Thumb2 addresses Thumb’s issues

 ARM is still the most flexible of the three ISA



15

Use the Hardware

 VFP is becoming more available, make use of it

 Available on some ARMv6 (ARM11)

 Available on all ARMv7A (CortexA8, CortexA9)

 Thumb2 can make a difference for big code base

 Neon (128bits SIMD)

 Useful for codec

 gcc mainline does not generate Neon code

 gcc mainline support Neon assembler

 If you want it, do it yourself



16

Know the software: Procedure Call Standard

 When passing parameters

 first four word sized parameters in register 0 to 3

 The rest on the stack

 Sub word sized parameter take a full register

 64bits values are passed in an even + consecutive odd
register. On the stack 64bits values are 8 bytes aligned

 f1(int a, double b, int c): a->r0, b->r2+r3, c-> stack

 f2(double a, int b, int c): a->r0+r1, b->r2, c->r3

 Avoiding parameters on the stack usually result in smaller and
faster code

 GCC has not yet implemented use VFP register for passing
parameter

 More info at http://infocenter.arm.com



17

Summary

 When doing mobile software development

 Keep in mind memory, power

 Use the hardware fully

 Profile on each target

 Know the surrounding software limitations


