
CONFIDENTIAL INFORMATION

Intrinsyc Software 

Linux on eMMC

Optimizing for Performance

Ken Tough

Principal Engineer

ktough@intrinsyc.com

mailto:uktough@intrinsyc.com


2CONFIDENTIAL INFORMATION

What is eMMC?

 Solid state storage device on MMC bus

 Chip on PCB

 NAND flash based



3CONFIDENTIAL INFORMATION

Why eMMC matters

 Popular on embedded devices

 Cheap

 Flexible



4CONFIDENTIAL INFORMATION

eMMC characteristics

 Fast read access

 Fast read seek times

 Acceptable sequential write performance

 Poor random write performance



CONFIDENTIAL INFORMATION

MMC

Micro-Controller

Slower NAND
Flash

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

Slower NAND 
Flash 

(Erase Blocks)

SRAM

Fast Cache
Flash

MMC 

Bus

Inside

Firmware



6CONFIDENTIAL INFORMATION

Inside the eMMC

 NAND flash arranged in pages

 Controller with temporary storage

 Wear levelling

 Free space management



7CONFIDENTIAL INFORMATION

Discard (TRIM)

 eMMC TRIM command

 Tells controller what is free

 TRIM blocks on format



8CONFIDENTIAL INFORMATION

eMMC scenarios

 Tablets, smart phones with lots of DRAM

 Netbooks with lots of DRAM

 Multimedia players, USB memory sticks



9CONFIDENTIAL INFORMATION

eMMC spec performance

 Typically emphasizes sequential write performance

 Random accesses hit eMMCs internal pipelines

 Frequently limited by eMMC’s Random IOPs limit

 Minimum OP time regardless of OP size

 Not often data BW limited

 ~200 IOPs (e.g. 4kB per OP)

 Analyze application’s eMMC read/writes patterns



10CONFIDENTIAL INFORMATION

Cache is King

 Alleviates write performance issues

 Improves read times even further

 Reduces NAND wear



11CONFIDENTIAL INFORMATION

Areas of Focus

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



12CONFIDENTIAL INFORMATION

MMC driver

 Maximum bandwidth enabled (8-bit, 50MHz)

 Enable DMA if option

 Power management

 Trim / vendor command support

 Benchmarking Log



13CONFIDENTIAL INFORMATION

Analysis at MMC/Block Level

0

5000

10000

15000

20000

25000
1 2 4 8 16 32 6
4

12
8

25
6

51
2

10
24

20
4

8

N
o

rm
al

iz
e

d
 C

o
u

n
t

Sectors per chunk

Histogram of chunk sizes

Reader

Surfing

Random



14CONFIDENTIAL INFORMATION

eMMC Read Times

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200

m
ill

se
c

Read Chunk Size (sectors)



15CONFIDENTIAL INFORMATION

eMMC Write Times

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

m
il

li
se

c

Write Chunk Size (sectors)



16CONFIDENTIAL INFORMATION

 Wide variation in read/write times

 Big dependency on internal eMMC firmware

 Power Class support

 Geometry / technology

 Trim support

Vendor Performance



17CONFIDENTIAL INFORMATION

 Allows reads to bypass long writes

 Useful in very specific applications

 Small RAM

 Page/Block cache and IO Scheduler

 Internal eMMC Pipelines blocked anyway

 Multimedia apps and “long” buffering

MMC v4 High Priority Interrupt



18CONFIDENTIAL INFORMATION

Filesystems

 Focus on write performance

 Tests run using fsbench (3.0 kernel, OMAP3 aka 
Nook Color)

 Various low-level and high-level scenarios modelled

 EXT4, BTRFS, NILFS2 tested



19CONFIDENTIAL INFORMATION

Filesystem Benchmarks



20CONFIDENTIAL INFORMATION



21CONFIDENTIAL INFORMATION



22CONFIDENTIAL INFORMATION



23CONFIDENTIAL INFORMATION



24CONFIDENTIAL INFORMATION

EXT4 - a write

 Journal write (usually ~16K)

 inode update (usually 4K)

 Data goes into page cache



25CONFIDENTIAL INFORMATION

BTRFS - a write

 Update non-sync very fast

 Sync write puts tree leaves on eMMC

 Sync write is 4 non-sequential writes



26CONFIDENTIAL INFORMATION

NILFS2 - a write

 Log structured filesystem

 Stores the ‘update’

 One large (40K+) write

 Eventually “snapshot” needs flushing

 Initialization

 Recovery



27CONFIDENTIAL INFORMATION

EXT4 w/o journal

 Not too dangerous on embedded systems with 
battery

 Good performance due to improved sequentiality



28CONFIDENTIAL INFORMATION

BTRFS

 If not using a lot of fsync/fdatasync

 Great large write performance

 Terrible on small/medium sync writes

 Good performance on multiple writes



29CONFIDENTIAL INFORMATION

NILFS2

 Consistent performance

 Potentially much faster if eMMC part has fast 
sequential performance

 Should theoretically be the fastest :-)



30CONFIDENTIAL INFORMATION

EXT4 with journal

 If journaling is needed, consider RAM journal 
device

 Again RAM journal not as dangerous as you think

 Better than BTRFS on small/medium sync writes



31CONFIDENTIAL INFORMATION

I/O schedulers

 CFQ, noop, deadline

 Results are similar within ~10% range

 QOS considerations are more important than 
throughput



32CONFIDENTIAL INFORMATION

Filesystem layout

 No swap

 Align partitions to erase block boundaries

 Extents match erase blocks

 System design (multiple storage devices)



33CONFIDENTIAL INFORMATION

User space

 Avoid synchronization on files

 Avoid sync/fsync/fdatasync/etc

 Avoid small writes to files, better to buffer

 Don’t be afraid to read, be afraid to write!



34CONFIDENTIAL INFORMATION

Future

 Linaro project (www.linaro.org) working on 
improving eMMC experience

 eMMC 4.5 brings METADATA

http://www.linaro.org


35CONFIDENTIAL INFORMATION

Summary

 User space

 Filesystem type

 Filesystem layout

 IO Scheduler

 Block IO & Cache

 MMC bus driver

EMMC

MMC/Block Device

Block Device

IO Scheduler

Filesystem Filesystem

User User User



36CONFIDENTIAL INFORMATION

Conclusion

 EXT4 (discard, ram/no journal) is probably your 
best bet

 Try out a couple of configurations for the eMMC 
you are targeting

 Benchmark per Vendor

 Avoid writes! :-)



37CONFIDENTIAL INFORMATION

Questions?


