Piece of cake – testing remote embedded devices made easy using open-hardware MuxPi

Paweł Wieczorek
March 12, 2018
Samsung R&D Institute Poland
Agenda

1. Introduction
2. Previous efforts
3. Idea
4. Hardware
5. Software
6. Next steps
7. Conclusion
Introduction
Use cases

Release engineering

- Continuous platform development
- QA step prior pulling new changes
- Package internal tests are not enough
Remote accessibility

- Easy to store in a secure manner
- Less effort than per developer
- Better utilized when shared
Piece of cake (with MuxPi)
Piece of cake (with Dryad)
Piece of cake (with Dryad)
Piece of cake (with Dryads)
Piece of cake (with Dryads)
Piece of cake (with Dryads)
Previous efforts
LAVA

- Linaro Automated Validation Architecture
- Automation system for deploying operating systems
- Virtual and physical hardware supported
- Allows running boot, bootloader and system level tests
Statistics

Since May 2014 we:

- Ran 13,432 jobs on 65 unique trees and 12,921 unique kernels.
- Performed 2,039,645 builds on 277 unique defconfigs.
- Performed 3,494,550 boots on 271 unique boards, across 3 architectures and 34 unique SoCs.

https://kernelci.org/stats/
https://linux.codehelp.co.uk/the-problem-of-sd-mux.html
SD MUX – open hardware

https://git.tizen.org/cgit/tools/testlab/sd-mux
Autohat board (SD MUX-based)

https://github.com/resin-io/autohat-board
SD MUX issues

$ dmesg | tail -12
[98.375599] usb 3-1: new full-speed USB device number 12 using xhci_hcd
[98.487663] usb 3-1: device descriptor read/64, error -71
[98.703656] usb 3-1: device descriptor read/64, error -71
[98.919658] usb 3-1: new full-speed USB device number 13 using xhci_hcd
[98.919969] usb 3-1: Device not responding to setup address.
[99.123998] usb 3-1: Device not responding to setup address.
[99.327681] usb 3-1: device not accepting address 13, error -71
[99.439718] usb 3-1: new full-speed USB device number 14 using xhci_hcd
[99.440049] usb 3-1: Device not responding to setup address.
[99.644028] usb 3-1: Device not responding to setup address.
[99.847719] usb 3-1: device not accepting address 14, error -71
[99.847819] usb usb3-port1: unable to enumerate USB device
Idea
Constraints

- Only *replaceable* media
- No *single point of failure* parts
- No *USB* involvement (from test server)
Requirements

• Minimum external connections
• Unified remote access to target devices
• Easy setup and maintenance
Features

- User interface (often requested)
- Power measurement (increasing demand)
- Writing EDID to HDMI
Hardware
MuxPi components

Connectors

- ETH 1S
- USB OTG
- SPI USB
- UART
- 2x PWR
- BARREL

NanoPi NEO

- USB / UART SWITCH & ID
- 4-wire UART Level Shifter
- Watchdog Timer
- Power Control & Current Measurement
- μC Cortex-M0
 - CTRL, ADC, DyPers, HDMI, GPIO, UI

Connectors

- USB ETH
- 2-Port USB HUB
- SD-READER
- SD-MUX
- μSD Adapter
- HDMI
- ADD-ONS
- 4x DyPer

Power Supply

- 4x LED, 2x Button, OLED Display
- 2x 2-channel DyPers
MuxPi components

- NanoPi NEO
 - USB / UART Switch & ID
 - 4-wire UART Level Shifter
 - Watchdog Timer
 - Power Control & Current Measurement
 - μC Cortex-M0
 - CTRL, ADC, DyPers, HDMI, GPIO, UI
 - Power Supply
 - 4x LED, 2x Button, OLED Display

- SD-MUX
 - 2-Port USB Hub
 - SD-Reader
 - 2x 2-channel DyPers

Connectors
- ETH in
- USB OTG
- SPI in USB
- UART
- 2x PWR
- BARREL

- USB ETH
- ETH OUT
- 2x USB-A
- μSD Adapter
- HDMI
- ADD-ONS
- 4x DyPer
MuxPi components
MuxPi components
MuxPi components

- ETH T5
- USB OTG
- SPI In USB
- UART
- 2x PWR
- BARREL
- NanoPi NEO
 - USB / UART SWITCH & ID
 - 4-wire UART Level Shifter
 - Watchdog Timer
 - Power Control & Current Measurement
 - μC Cortex-M0
 - CTRL, ADC, DyPers, HDMI, GPIO, UI
- Power Supply
- UI
 - 4x LED, 2x Button, OLED Display
-SD-MUX
 - 2x 2-channel DyPers
- USB ETH
- 2x USB-A
- μSD Adapter
- HDMI
- ADD-ONS
- 4x DyPer
MuxPi components

- ETH TS
- USB OTG
- SPI USB
- UART
- 2x PWR
- BARREL
- Power Supply
- USB / UART SWITCH & ID
- 4-wire UART Level Shifter
- Watchdog Timer
- Power Control & Current Measurement
- μC Cortex-M0
 CTRL, ADC, DyPers, HDMI, GPIO, UI
- 2-Port USB HUB
- SD-READER
- SD-MUX
- 2x USB-A
- μSD Adapter
- HDMI
- ADD-ONS
- 4x DyPer
- 2x 2-channel DyPer
- 4x LED, 2x Button, OLED Display
MuxPi components

- **Connectors**
 - ETH IN
 - USB OTG
 - SPI In USB
 - UART
 - 2x PWR
 - BARREL

- **NanoPi NEO**
 - USB / UART SWITCH & ID
 - 4-wire UART Level Shifter
 - Watchdog Timer
 - Power Control & Current Measurement

- **SD-MUX**
 - μC Cortex-M0
 - CTRL, ADC, DyPers, HDMI, GPIO, UI
 - 4x LED, 2x Button, OLED Display
 - 2x 2-channel DyPers

- **SD-READER**
 - 2-Port USB HUB
 - USB ETH

- **Connectors**
 - ETH OUT
 - 2x USB-A
 - μSD Adapter
 - HDMI
 - ADD-ONS
 - 4x DyPer
Essential MuxPi functions

- Switching a microSD card between DUT and TS
- Switching power supply for DUT
- Switching jumpers/buttons of DUT
- Measuring power consumption of DUT
- Writing EDID to DUT over HDMI connection
- Providing DUT connection (UART, USB, ETH, microSD card) over Ethernet
- Interacting with farm maintainer
Indicators

- SD READER LED
- USBA-2G
- POWER LED
- UART
- VCC
- LED
- LED 1 2
- RGB1
- RGB2
- 128x32 OLED Display
- BUTTON 1 2
Easy maintenance
Extensibility
Major improvements

- Independent (standalone)
- Aware of its state
- Easy to maintain
- Extensible from start
Building your own

NanoPi NEO ≈ 10
Building your own

NanoPi NEO ≈ $10
Parts ≈ $80
Building your own

NanoPi NEO \(\approx\) $10
Parts \(\approx\) $80
Soldering skills *High*

https://git.tizen.org/cgit/tools/muxpi
Building your own

NanoPi NEO $10
Parts $80
Soldering skills High
Patience A LOT

https://git.tizen.org/cgit/tools/muxpi
Building your own

NanoPi NEO ≈ $10
Parts ≈ $80
Soldering skills High
Patience A LOT

https://git.tizen.org/cgit/tools/muxpi
Software
Multitier architecture

- “Do One Thing and Do It Well”
- RESTful HTTP APIs
- Homogeneous solution stack
Responsibilities

- Who knows what requires verification?
- Who knows which actions are necessary?
- Who knows where can it be done?
- Who knows how to do it?
Responsibilities

• Who knows what requires verification?
 Perun

• Who knows which actions are necessary?

• Who knows where can it be done?

• Who knows how to do it?
Responsibilities

- Who knows what requires verification? **Perun**
- Who knows which actions are necessary? **Weles**
- Who knows where can it be done?
- Who knows how to do it?
Responsibilities

- Who knows what requires verification?
 Perun

- Who knows which actions are necessary?
 Weles

- Who knows where can it be done?
 Boruta

- Who knows how to do it?
Responsibilities

• Who knows what requires verification?
 Perun

• Who knows which actions are necessary?
 Weles

• Who knows where can it be done?
 Boruta

• Who knows how to do it?
 Dryad (MuxPi-based)
Dryad (farm)

- Manages single DUT
- Fully aware of its capabilities
- Requires only two interfaces
 - Power supply
 - Network connection (Ethernet)
$ fota --help
Usage of fota:
 -card string
 path to SD card
 -map string
 path to JSON formatted mapping
 -md5 string
 URL to MD5SUMS file
 -quiet
 suppress logging

$ stm --help
Usage of stm:
 -dut
 connect SD card to DUT
 -m duration
 time delay for tick command
 -tick
 power off and on after 'm' (s)
 -ts
 connect SD card to test server
Dryad (software)

$ fota --help
Usage of fota:
- card string
 path to SD card
- map string
 path to JSON formatted mapping
- md5 string
 URL to MD5SUMS file
- quiet
 suppress logging

$ stm --help
Usage of stm:
- dut
 connect SD card to DUT
- m duration
 time delay for tick command
- tick
 power off and on after 'm' (s)
- ts
 connect SD card to test server
Dryad (software)

Usage of fota:
- `--help` for help.
- `-card string` for path to SD card.
- `-map string` for path to JSON formatted mapping.
- `-md5 string` for URL to MD5SUMS file.
- `-quiet` to suppress logging.

Usage of stm:
- `--help` for help.
- `-dut` to connect SD card to DUT.
- `-m duration` for time delay for tick command.
- `-tick` to power off and on after 'm' (s).
- `-ts` to connect SD card to test server.
Dryad (software)

$ fota --help
Usage of fota:
-card string
 path to SD card
-map string
 path to JSON formatted mapping
-md5 string
 URL to MD5SUMS file
-quiet
 suppress logging

$ stm --help
Usage of stm:
-dut
 connect SD card to DUT
-m duration
 time delay for tick command
-tick
 power off and on after 'm' (s)
-ts
 connect SD card to test server
• Dryad farm management system
• Schedules requests
 • Priority
 • Device groups
 • Delayed access
• Provides convenient access to selected Dryad
Dryad life cycle in Boruta

1. Prepares environment
2. Sets up tunnel
3. Unallocated
4. Maintenance mode
5. Actions performed
6. Matches requirements
Boruta on stack
• Lightweight testing framework
• Provides LAVA-like interface
• YAML job definition → actions executed on DUT
 • Deploy
 • Boot
 • Test
 • Collect
Weles purpose

- Prepares environment
- Sets up tunnel
- Unallocated
- Matches requirements
- Actions performed
- Maintenance mode

35/50
Weles action sequence

- Parses YAML
- Collects assets
- Requests DUT
- Performs tests
Weles on stack
Weles on stack
Weles on stack
Weles on stack

Diagram of Weles on stack with arrows pointing to different elements.
Weles on stack
Perun

- OS images testing system
- Schedules verification (per new set of OS images)
- Automates QA step of Release Engineering Duty
Perun action sequence

1. Crawl URL
2. Interpret results
3. Collect artifacts
4. Submit Weles jobs
5. Report changes
Perun on stack
SLAV
Keeping SLAV simple
Keeping SLAV simple (and decoupled)
Keeping SLAV simple (and decoupled)
Keeping SLAV simple (and decoupled)
Keeping SLAV simple (and decoupled).
Next steps
Future plans

Hardware
- Audio I/O
- USB Type C investigation
- NanoPi serial console on USB

Software
- Web interfaces for current layers
- Service state management
- Release engineer's layer
Further details

- MuxPi
 https://wiki.tizen.org/MuxPi

- SD MUX (deprecated – lesson learnt)
 https://wiki.tizen.org/SD_MUX
• Mailing list
general@lists.tizen.org

• #tizen on Freenode
https://webchat.freenode.net/?channels=tizen
Conclusion
Summary

- Quick setup
- Easy maintenance
- Responsibilities division
- Execution parallelization
- Environment unification
Questions?
Thank you!

Paweł Wieczorek
p.wieczorek2@samsung.com
Samsung R&D Institute Poland
• **Metropolis** – simple, modern Beamer theme
Pictures used

- https://commons.wikimedia.org/wiki/File:Tux.svg
- https://commons.wikimedia.org/wiki/File:Wayland_Logo.svg
- https://commons.wikimedia.org/wiki/File:Enlightenment_logo_black.png
- https://developer.tizen.org/sites/default/files/images/about_tizen_1.png
- https://commons.wikimedia.org/wiki/File:ColoredBlankMap-World-10E.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_Korean_flag.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_Polish_flag.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_USA_flag.svg
- https://validation.linaro.org/static/docs/v2/_images/lava.svg
- https://wiki.linaro.org/Platform/LAB/LMP_in_practice
- https://forums.resin.io/uploads/resin/original/1X/88ab2e061cd644b18b95fa99ede9ce6b98adfa44.jpg
- https://commons.wikimedia.org/wiki/File:Italian_traffic_signs_-_fermarsi_e_dare_precedenza_-_stop.svg
- https://farm9.staticflickr.com/8263/28955874330_d1b1202ae3_k_d.jpg
- https://commons.wikimedia.org/wiki/File:PEO-smiley_smile.svg