NLUUG-EDE-1

Understanding and Using
SMP/Multi-Core Processors

New hardware and how to use it

Mike Anderson

Chief Scientist

The PTR Group, Inc.
http:/ /www.theptrgroup.com

-

10/28/2008 - Copyright © 2008 The PTR Group Inc

What We Will Talk About

Some processor basics

Parallelism in computing

Motivations for multi-core processors
Scaling issues

O/S support for multi-processing
Designing software for multi-processing
Demo

oo K K K K XK

Y 1=

NLUUG-EDE-2 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Boosting Performance

#Our industry is in a constant search for
better performance

» Better MIPS /watt ratios

#However, simply increasing clock
frequencies has not been the panacea

» Higher frequencies mean more voltage

- Power consumption varies with the square of the
voltage

#The option is to increase the number of
instructions/second by adding parallelism

Y 1=

NLUUG-EDE-3 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Scotty, We need more Power!

+# Parallelism can be viewed at the
micro (fine-grained) or macro
(coarse—grained) level

» Many processor families already
support fine-grained parallel
capabilities

3 Largely due to power constraints,
the semi manufacturers started
moving to multiple cores

» This has given rise to the current
head-long rush to multi-core
processing

+# But, we’re getting ahead of
ourselves

» Let’s first examine some of the issues
of processors in general

pGWQF

i
performancERaquiramen't

Source: FreeScale Semiconductor

Y 1=

NLUUG-EDE-4 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

More Speed Through Pipelining

+Given 4 cycles to execute an instruction:

Fetch ’

Decodei E PE

Execute V

Retire h
to t t, t; t,

+¢Use an instruction pipeline to make it faster

Fetch
Decodei
Executei

Retire i

NLUUG-EDE-5 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Classic vs. Newer CPUs

+#The PPC 860, PPC 405 and 80486 are
examples of scalar CPUs

» Only one instruction/cycle

#With a properly tuned pre-fetch unit and
associated pipeline, we can feed multiple
instruction units per cycle

» More than one instruction/cycle yields a
super-scalar CPU

- The Pentium, PPC 440, ARM 11, etc.

» This is also called instruction-level
parallelism (ILP)

Y 1=

NLUUG-EDE-6 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example Super-Scalar Processor

o

instraction Feich

e oampietnn

Lt iaramech bini

=3
'- \
GI ;
-?:i':-:'l-ar:c:'- SEX1SF oD Ve teramelll 7!
| ‘ Bt EI'IJ”HH-H
Y s
Yo g

2 : interface
| = P Rename tﬂMEITIDI"f;
H Sub-System

Multiple IUs

Bulless

3 Instructions & 1 Branch

per cycle on this processor! & ____________________ J 5

N e T R

B MPX bus interface

Source: Freescale Semiconductor

NLUUG-EDE-7 10/28/2008 - Copyright © 2008 The PTR Group Inc.

Fine—-grained Parallelism via SIMD

Some processors have specialized
vector-processing hardware
» |A SSE/MMX, Power Altivec, etc.

+# Allows multiple operations on a matrix
of data in a single command
» Good for DSP, RADAR, graphics, etc.
+# But, using SIMD instructions requires a
lot of work on the part of the
developer

» They must understand the problem and
map it to the vector units properly

NLUUG-EDE-8

10/28/2008 - Copyright © 2008 The PTR Group Inc.

e
\

DDDDDDDP

I I

Dmmmmmmg

OOO000CmE < 4

I

I
I
I I
I
N [

I | <
I I I []
I
I O
I
|

Source: ARS Technica

L2

AMP Clusters

+ This is what we most commonly see in embedded/R-T
systems

» Multiple CPUs tied together via LANs or other interconnect
strategy
- Each CPU has its own copy of the operating system

» E.g., media center extenders or Telco switching systems

+ Non-Uniform Memory Architecture (NUMA)

» Allocation of processes to processors is guided by the distance
between the processor and the memory you want to use

+# This is the realm of middleware
» NDDS™. CORBA, SAForum’s AIlS

+ The developer is responsible for allocating processes to
Processors
» Each processor is referred to as a “node”

N

Y 1=

NLUUG-EDE-9 10/28/2008 - Copyright © 2008 The PTR Group Inc.

Cluster Characteristics

#Tasks are parceled out to

processors as they become idle or '11-'1%1}“;

they can be dedicated to a e
particular computation At

#Communications latency becomes Rl
the key characteristic for use in (T
real-time applications it

» Ethernets are cheap, but not
deterministic

#They can combine load balancing
and HA into a single system

» Physical size is an issue

NLUUG-EDE-10 10/28/2008 - Copyright © 2008 The PTR Group Inc.

Programming for AMP

+#No one standard is available for AMP
» Multiple, competing APIs

#Requires the developer to decide which
code needs to run where

» You need to define message sources, sinks
and distribution techniques

+#Can be very complex, but performance of
100s-1000s of processors can be
effectively harnessed for certain classes of
problems

Y 1=

NLUUG-EDE-11 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Characteristics of SMP Machines

#All processors see everything
» Memory, |/0O, interrupts, etc.
#There is only one kernel

» The scheduler determines which applications
are assigned to which processor

#Applications can migrate between
processors

#They do not typically share caches

» Although hybrid cache architectures are on
the way

Y 1=

NLUUG-EDE-12 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example SMP Motherboard
+#Quad-CPU AMD Opteron

"(I. : =5 .__:I.:;' F |5 . s .. FP?-

i T g 1 S VN [

Source: Tyan

Y 1=

NLUUG-EDE-13 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Problems with SMP

SMP systems can be complex to set up and maintain
because of duplicated hardware such as processor fans,
etc.

» They tend to be noisy as well due to fans

4 SMP does not scale perfectly

» Because the memory is shared between CPUs and the memory
has a finite bandwidth, SMP machines can develop “hot spots”
where multiple applications must serialize on a single piece of
data

+ Process migration can lead to poor cache utilization
» We need to flush the caches if a process migrates
» This also applies to ISR migration

+ Multiple processors can lead to race conditions
» We need to provide for multi-processor synchronization

Y 1=

NLUUG-EDE-14 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Multi-Core Performance Issues

+# Shrinking silicon processes allow for placing multiple,
complete CPUs on the same die

» However, synchronization and memory bandwidth issues limit
our performance in bus-based interconnects

3 Dual core runs at about 180% of single core of same
speed
» Quad core runs 50% faster than the dual
- 270% faster than the single core
+# Multi-core is typically clocked slower than a single core
» Lower heat production and power consumption
» But, poorer performance for single-threaded applications

Y 1=

NLUUG-EDE-15 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Multi-Processor Use Cases

SMP
Network
*O/S manages applications transparently
*Good for control plane
@ *Bus bandwidth a limit for data plane
Partitioning

Network

*Typically AMP
*Frequently implemented via light-weight executives
or hypervisors
/\ ‘\ *Works for both control & data plane
@ o *Partitioned processors can run alternate O/S or
thin layers
*Partitioned processors are data shufflers
*Data plane cores can be simpler and cheaper

*But, deep packet inspection suffers if they’re
too simple

Y 1=

NLUUG-EDE-16 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Multi-Processing Use Cases #2

Offloading

Network

G)

Standby

Network

NLUUG-EDE-17

*CPU-intensive work is sent to alternate
core(s) with thin executive

*Used in deep packet inspection and security
applications

*ldle cores are held in reserve for redundancy
*Supports adding more capacity in the field via software
L oad updates to idle core and switch

*Rapid S/W upgrade with little downtime

Y 1=

10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

The Multi-Core Spectrum

NLUUG-EDE-18

Core Count

high-end
control/data plane
Level 2-7 packet
inspection

Data shuffler
Simple packet
filtering

IBM Cell
IA Nehalem
FreeScale QorlQ P4080
Cavium Octeon
IA Atom
|A Xeon
ARM MPCore FreeScale MPC8641/8572

Mixed
Control/Data
Low Demand

high-end

control plane

Core Performance

10/28/2008 - Copyright © 2008 The PTR Group Inc.

Processor Affinity

+# The term processor affinity relates to the tendency for

an application to run on a particular processor and
resist migration

+# The scheduler will prefer not to migrate a process to
another CPU unless needed
» This is referred to as soft affinity

» This can be overridden with hard affinity assignments in source
code

+# Hard affinity APIs allow the developer to make explicit
assignments to a processor or a group of processors

» You decide where your code runs by setting a CPU bit mask for

each thread via calls like Linux’s sched setaffinity () and
sched getaffinity()

NLUUG-EDE-19 10/28/2008 - Copyright © 2008 The PTR Group Inc. \ K P TR

Example of Interrupt Load Balancing

mike@defiant:~> more /proc/interrupts

0:
1:
8:

9:
12:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

NMI:
LOC:
ERR:
MIS:

NLUUG-EDE-20

CPUO
21427467
13217

5

2

17306
205456
158807
2291422
405909

3

168320
2174764
0

0

0

0
42831216
0

0

CpPU1
21403917
14317

0

0

23786
206781
158750
2290748
400991

0

164332
2176161
0

0

0

0
42830668

IO-APIC-edge
IO-APIC-edge
IO-APIC-edge
IO-APIC-fasteoi
IO-APIC-edge
IO-APIC-edge
IO-APIC-edge
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi
IO-APIC-fasteoi

10/28/2008 - Copyright © 2008 The PTR Group Inc.

timer «— Interrupt Balancing

i8042

rtc
acpiXInterrupt Affinity

i8042
libata
libata
nvidia
ipw3945,
ohcil39%4

uhci hecd:
uhci hcd:
uhci hecd:
uhci hecd:

ethO

usbl, ehci hcd:usbb
usb2, HDA Intel
usb3

usb4

sdhci:slotO

Non-X86 Multi-Core

#Intel and AMD are not the only silicon
vendors with multi-core

#Each of the major core types have their
own multi-core processors

» ARM, MIPS, PPC all have multi-core
implementations

#The following charts show just a few of
the options

Y 1=

NLUUG-EDE-21 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Dual-Core PowerPC from FreeScale

+#+MPC8641D

+#Dual E600
cores can run oo -
SMP or

detached mode

#MPX bus keeps
the processor’s
caches
coherent

NLUUG-EDE-22

Quad-Core MPCore ARM-11

#Quad ARM-11
processors ISR e

#Specialized
Interrupt 3
distribution for
routing and ol
interrupt .
balancing

*B u S S n OO pl n g to - B B B BE B ILE BILE B B
improve cache m e

hhhhhhh

coherency S

L]

NLUUG-EDE-23 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Dual-Core MIPS from Broadcom

+#Dual MIPS-64
with Quad-
issue, in-order
pipeline

+#600-800 MHz
cores

+#Power
dissipation of 8-
10W @ 800 MHz

NLUUG-EDE-24

Sarlal

M

e Intertace 256 Bits
_ ano

iy Imsem E

Debug/ Bus 581 5B 512 kKB Data
Trace Cora Core L2 Cache Mover

ZBBus Memory 16-50 Ghps

Confroller
Bus runs at 1/2 core clock @ 128 Gbps

£l E3 K3

10/100/

Dual SMBus

GPIO/
Interrupt/ 1000 1000 1000
PCMCIA MAC MAC MAC

FCIHT Bridge
32-BItPCI

10/100/ 10/100/

Generc Bus

and
A 10 N

2 Gbps 19.2 Gbps

1 Gbps 3 x GMINZ x 16-hit FIFO

@ 2 Gbps/@ 6 Ghps
Source:Broadcom Corporation

T4

10/28/2008 - Copyright © 2008 The PTR Group Inc.

=T

3 Cores and Beyond

+#IBM’s Xenon™ is a 3-
core, 64-bit PPC 970

used in the Xbox
360

+-8-16 cores are here
or soon to be
available
» Cavium Octeon

» FreeScale QorlQ
PA4080

» Intel Nehalem

NLUUG-EDE-25 10/28/2008 - Copyright © 2008 The PTR Group Inc.

SSOCs in Embedded Systems

+The cellular phone
marketplace is focused
on providing a
battery-operated,
convergence device D =

enna 203D Graphics 8 yideo Accelerator
1: Accelerator (IVA)

Mobile
DDR

NAND
Flash

TWL922320

Daka mset
} P O n e P DA a m e . Shared Memory Controller/DMA System Interface
y y eless e ase Powear Onfaff |

m a.c h I n e y Ca m e ra y M P 3 Antenns E ':”_-_5' - . l'.‘::x:‘::: A card
= Regulators I card

player, TV and more e .- -
+This requires al B

| MS/MMC/SD/SDI0

LGB 1502301 Audio Codec
PO Touch Screen Controller

components from s EC R G

= (&)
Audio | InfOut M Tl Products

multiple technologies

Source: PalmOne

NLUUG-EDE-26 10/28/2008 - Copyright © 2008 The PTR Group Inc.

Special-Purpose Heterogeneous MCPs

#The IBM Cell processor is
another example of a
heterogeneous multi-core
processor

64-bit PFC CPU

) - |

» Built for the PS/3 game
console

+#But, it makes an excellent

RADAR processing engine
» High-performance

computing engine

The CELL Arehitecture

Y >r=

NLUUG-EDE-27 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Advantages/Disadvantages of
Heterogeneous Cores

#The biggest advantage the ability to
match the algorithm to the processor core

» Traditional uP cores for user interfaces and
control applications

» DSP cores for signal processing and
audio/video CODECs

» Power consumption can be significantly
lower in this approach

#However, you need two sets of build tools
and special knowledge of the extra cores

NLUUG-EDE-28 10/28/2008 - Copyright © 2008 The PTR Group Inc. \ K P TR

Threading Example

+#A reasonable example of processes vs.
threads would be an application like MS
Word

» Word is the process that anchors the VMA

#Word is comprised of multiple threads
» Repagination [ﬁ?ﬂ?ﬁﬂﬂ?fmﬂ? e }
» Background printing .
» WYSIWYG formatting
» Spell checking --
» Popping up that annoying paper clip thlngy
» And more...

Scheduling Threads

#There are several different approaches to
dispatching threads in various O/Ses

#One approach sees only the processes

» The threads then run a second-tier scheduler to see
who gets the process’ time slice

- The M:N threading model of OS/X, Solaris and some
Windows

Another approach sees all threads as separate
entities

» The 1:1 threading model of most RTOSes and Linux
#Some allow a mixture of both

Y 1=

NLUUG-EDE-30 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Threading APIs

#Windows™, OS/X™ and Solaris™ all have their
own threading APIs

» These implement a M:N threading model in most
cases

#Glibc has the GNU Pth API
» Also an M:N threading model

#POSIX implements its own threading APl known
as pThreads
» Works in either M:N or 1:1 models

» Available on virtually all O/S platforms including
Windows®, Linux, and many of the RTOSes
- Windows® has both native and pThreads implementations

NLUUG-EDE-31 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y 1=

Confusion as to what a Thread is...

#Many developers are intimidated
by threading in their applications

» They are not quite sure what a
thread is

» O/S APIs can be difficult to
understand

Essentially, if you can think of a
piece of code a separate sequence
of steps from the main, then its
probably a candidate to be a
thread

» A thread can be thought of as a
subroutine with a life of its own

Source: myword.info

NLUUG-EDE-32 10/28/2008 - Copyright © 2008 The PTR Group |

Fine-Grained Threading via OpenMP

#Open standard focused on extending compilers
to support fine—grained parallelism via
threading

» Goal is high-performance by splitting up algorithms
and running them as parallel threads

#Targeted at simultaneous multi-threading (SMT
a.k.a. hyperthreaded) and multi-core CPUs

» Compiler is responsible for creating parallel threads

» Compilers require hints from the developer for what
to parallelize

#http:/ /www.openmp.org

Y 1=

NLUUG-EDE-33 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

OpenMP Usage

#To use OpenMP, you may need to restructure

your code:

for (j=0; j < num elements; j++) {
my array[j] = startval;
startval++;

}

#This loop cannot be parallelized because of the
data dependency on startval

» We need to rewrite the code like this:

#pragma omp parallel for

for (j=0; j < num elements; j++) {
my array[j] = startval + j;

}

startval += num;elements;

NLUUG-EDE-34 10/28/2008 - Copyright © 2008 The PTR Group Inc.

Programming for OpenMP

#0OpenMP is only supported by certain
compilers

» E.g., Intel compilers for C/C++ and
FORTRAN

» GNU gcc 4.2.1+

#Requires the use of various #pragma
directives to provide hints for the
compiler

» You need to know where they might apply

#May require you to recode your program
to make it more parallelizable
L5
Y 1=

NLUUG-EDE-35 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Stepping up a Level - pThreads

+#Of all of the threading APIs, the POSIX
pThreads APl has arguably the largest
number of implementations

» A non-proprietary API that can be
implemented in virtually any O/S
#The threads all live in the global address
space of the parent process VMA

» Threads can each have their own priority
- Different scheduling policies are also supported

#However, pThreads have a reputation for
being difficult to understand

Y 1=

NLUUG-EDE-36 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

pThread Example #1 of 3

#include <stdio.h>

#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

int global;

void * thread(void *joiner) ({
void *status;
global = pthread self();
sleep (1) ;
printf ("Parent PID is %d, TID is %d, global = %d\n",
getppid () , pthread self (), global);
if (joiner) {
if (pthread join((pthread t)Jjoiner, &status)) ({
exit(1l);
}

}
pthread exit((void*) 0);

NLUUG-EDE-37 10/28/2008 - Copyright © 2008 The PTR Group Inc.

pThread Example #2 of 3

int main(void) {

void *status;

int X;

pthread attr t attr;
pthread t curr thr id;
pthread t prev_thr id;

pthread attr init(&attr);

if (pthread attr setschedpolicy(&attr, SCHED RR)) ({
exit(1l);

}

/* Start 3 threads */
prev_thr id = 0;
for (x=0; x<3; x++) {
if (pthread create(&curr thr id, &attr, thread, (void*)prev thr id)) {
exit(1l);
}

prev_thr id = curr_thr id;

NLUUG-EDE-38 10/28/2008 - Copyright © 2008 The PTR Group Inc.

pThread Example #3 of 3

/* Join last thread */
pthread join(curr thr id, é&status);

)
#This example shows the same piece of code
being used to create three different threads

» Each thread is independent, but shares the VMA of
main

» Each could have its own priority and processor
affinity assigned

» Ina 1:1 threading model, each would be
independently schedulable

Y 1=

NLUUG-EDE-39 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Reentrancy and Synchronization

#Thread APIs like POSIX support semaphores,
mutexes, message queues and a host of other
IPC mechanisms

» Due to the flat address space within the VMA, critical
sections need to be protected to avoid reentrancy
Issues

#Use of semaphores can enforce ordering of

threads

» Blocking one thread does not block all threads in the
same process in 1:1 thread models

Y 1=

NLUUG-EDE-40 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Simplifying Writing Thread Code

#Most threading APIs, although fairly
straightforward, have been wrapped in
class libraries

» C++, Java, Python, Ruby, etc.

#Some, like Intel’s Thread Building Blocks
are open source and run in multiple
O/Ses " tfrggel

» http://osstbb.intel.com/ St

Others are bundled into development

tools such as Visual Studio
» Use the approach that works for you

NLUUG-EDE-41 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Y >r=

Migrating to Multi-Core

+#If your applications is single-threaded,
simply recompile for the platform and run

» Don’t be surprised if the performance

actually drops from that of a single core due
to clock-speed issues

+#I1f the application is multi-threaded, try a
containment approach first

» Use affinity settings to lock the threads to a
single core

» Then start enhancing with mutual exclusion
to enable threads running on multiple cores

NLUUG-EDE-42 10/28/2008 - Copyright © 2008 The PTR Group Inc. \ K P TR

Threading Design Guidelines

#When developing applications, try to
identify those activities that can run in
parallel

#ldentify data flow through the application

» Determine what data must be shared
between activities

#ldentify the correct sequencing of the
activities
» Temporal correctness
#ldentify relative importance of activities
» These may need priority adjustments

Y 1=

NLUUG-EDE-43 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Thread Design Guidelines #2

Don’t assume that priorities will preclude race
conditions
» Lower priority thread can run on other core!

+# When designing your threads, keep them as separate as
possible
» Don’t share data unless necessary

» Use synchronization primitives when needed
- Semaphores, mutexes, message queues, etc.

+# Try to keep data used by threads on separate cache
lines

» Create a cache_aligned_malloc/cache_aligned_free to make
sure data is in separate cache lines to avoid false sharing

- Avoid ping-ponging between processor caches

Y 1=

NLUUG-EDE-44 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Thread Affinity Guidelines

+#I1f your hardware is SMP/Multi-Core, run
the application without adjusting the
affinity to see if there is a problem

» Don’t try to solve a problem if it doesn’t
exist
#If there is an issue, look at processor
loading to see if one processor is bearing
most of the effort

» If yes, then adjusting affinity comes next

L6
Y 1=

NLUUG-EDE-45 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Threads and Multi-Core/SMP Systems

+#In O/Ses that support the 1:1 model, each
thread will have its own CPU affinity
settings

» Individual threads could be assigned to
different CPUs

+#In M:1 or M:N threading models, the
threads typically execute on the same
processor as the main process

» You can set the process affinity, but not the
individual thread’s affinity

Y 1=

NLUUG-EDE-46 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Interrupt Affinity Guidelines

#Interrupt affinity can be tougher

#You’'d like the ISR to always execute on
the same core due to cache effects

#But, having all of the interrupts on the
same core can cause poor interrupt
latency

» Make assignments carefully

#Frequently, the only way to determine the
optimal assignment is to test, test, test

Y 1=

NLUUG-EDE-47 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example: Vehicle Telematics

#Dual-core ARM running Linux

» Engine monitoring, GPS, MP3, and DVD
playback functions

#ldentify the “important” applications

» Engine monitoring (gas, oil, water, ABS,
engine operation, speed, temperature)

#ldentify the low-latency applications
» DVD, MP3

Y 1=

NLUUG-EDE-48 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example: #2 of 7

#Without the important applications, the
car is undriveable

» We could collect them into a single process
with threads running at different update
frequencies

- Are the devices interrupt driven or polled?

- If interrupt driven, these might be able to be
nandled via a set of kernel threads or within the
SR themselves

- If polled, user threads can use nanosleep to wake
up periodically to poll the sensors

Y 1=

NLUUG-EDE-49 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example: #3 of 7

#The low-latency applications require a
guaranteed service level

» 24 Hz for the video
- NTSC is 30 FPS, PAL is 25 FPS

» Audio sample rates can be high, but the jitter
is typically less than 5ms

- 250 Hz is typically fast enough to minimize jitter
for MPEG audio

#This might require affinity assignments,
but we’ll test it first

Y 1=

NLUUG-EDE-50 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example: #4 of 7

#DVD playback lends itself to threading

» Threads for each of:

- Read the media, video CODEC, audio CODEC, user
interaction (Ul), render video, playback audio

#MP3 is similar to DVD without video

+#GPS is a separate process

» Threads for reading GPS radio, read map data,
render map with location, Ul

» Frequency for update can be 1-2 Hz

Y 1=

NLUUG-EDE-51 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example: #5 of 7

#Based on frequency, GPS & vehicle
health/status could both run on single core

» DVD/MP3 probably needs to be on a separate
core unless we have hardware assist on
CODECs

+#Based on what we have so far:
» 4 processes, 15-20 threads

» Priority assignments and affinity still need to
be tested

Y 1=

NLUUG-EDE-52 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example: #6 of 7

#This example was not exhaustive
» Designed to give you a feel for the process
#Detailed design for each of the individual
processes would follow
» Must develop thread synchronization strategy

» Number of threads will probably change
during design

Y 1=

NLUUG-EDE-53 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

Example: #7 of 7

Vehicle Status GPS DVD MP3

Playback

Core 0 Core 1

NLUUG-EDE-54 10/28/2008 - Copyright © 2008 The PTR Group Inc.

No One Answer

1t is unlikely that there would ever be just one
way to solve a problem

» Assignment and number of processes and threads is
based on experience and experimentation

#There are many alternative ways to achieve the
same goals

» Someone just has to step up to the plate and pick
one

» Don’t be afraid to change course if something isn’t
working

NLUUG-EDE-55

10/28/2008 - Copyright © 2008 The PTR Group Inc. _k{ = ""T

Summary

#SMP systems have been with us for quite some
time
#Multi-core is just SMP on a chip
#Make sure your O/S supports affinity
mechanisms
» Provides the most flexibility
» Availability of priorities is nice too
#We must consider application redesign to take
advantage of multi-core processors

» The use of threads becomes important
» POSIX pThreads API exists on most O/Ses

- Good documentation, good place to start

NLUUG-EDE-56 10/28/2008 - Copyright © 2008 The PTR Group Inc. \
A

