Getting started with meta-selinux - enhancing system security on QEMU

Yocto Summit 2021.11

Tomasz Żyjewski

3MDEB
whoami
- Who we are?
- SELinux description
- Access Control Mechanisms
- Policies
- meta-selinux overview
- Image building
- Running in QEMU
- Working with access denials
- Summary
- Q&A
over 2 years in 3mdeb
integration of update systems and OS creation for embedded devices
interested in:
 - Yocto Project
 - OS updates
 - boot-time optimization
coreboot licensed service providers since 2016
coreboot project leadership participants
UEFI Adopters since 2018
Official consultants for Linux Foundation fwupd/LVFS project
Yocto Participants and Embedded Linux experts
Open Source Firmware enthusiasts and evangelists
Security architecture for Linux systems that allows administrators to have more control over who can access the system, name comes from Security-Enhanced Linux (SELinux)

- originally developed by the United States National Security Agency (NSA) as a series of patches to the Linux kernel using Linux Security Modules (LSM)
- Released to the open source community in 2000
 - integrated into the upstream Linux in 2003
 - last stable release (v3.3) comes in Oct 22, 2021 - can be found on github page https://github.com/SELinuxProject/selinux/releases
- Security-Enhanced Linux implements the Flux Advanced Security Kernel (FLASK)
 - kernel with architectural components prototyped in the Fluke operating system
 - provide general support for enforcing many kinds of mandatory access control policies
- Security of modified vs unmodified Linux system
 - system with or without SELinux
- Provides a hybrid of concepts and capabilities drawn from mandatory access controls, mandatory integrity controls, role-based access control (RBAC), and type enforcement architecture
- SELinux packages comes for several distributions
 - https://github.com/SELinuxProject/selinux#installation
 - Ubuntu, Fedora, Buildroot and of course Yocto Project
SELinux features

- Clean separation of policy from enforcement
- Well-defined policy interfaces
- Independence of specific security-label formats and contents
- Flexible policy
 - easy to write own, custom policy
- Provide controls over
 - process initialization and program execution
 - file systems, dirs, files, open file descriptors
 - sockets, network interfaces
- Default-deny policy
 - anything not explicitly specified in the policy is disallowed
Security policies - set of rules that tell what can or can't be accessed
- All about subjects requesting access to an object
 - checking an access vector cache (AVC)
 - permission granted or denied depending on security context
- In case of denial, `avc: denied` message available in system logs

avc: denied { dac_override } for pid=447 comm="systemd-fstab-g" capability=1 scontext=system_u:system_r:systemd_generator_t:s0 tcontext=system_u:system_r:systemd_generator_t:s0 tclass=capability permissive=1

Type enforcement and labeling
- user:role:type:level labels format
- policy enforcement
There are many ways to configure SELinux to protect your system:

- Most common are targeted policy and multi-level security (MLS).
- Targeted policy mostly use label type.
- MLS is way more complicated - user, role and type of label are used here.

Config file under the `/etc`:

```
# cat /etc/selinux/config
# This file controls the state of SELinux on the system.
# SELINUX= can take one of these three values:
#     enforcing - SELinux security policy is enforced.
#     permissive - SELinux prints warnings instead of enforcing.
#     disabled - No SELinux policy is loaded.
SELINUX=enforcing
# SELINUXTYPE= can take one of these values:
#     minimum - Minimum Security protection.
#     standard - Standard Security protection.
#     mls - Multi Level Security protection.
#     targeted - Targeted processes are protected.
#     mcs - Multi Category Security protection.
SELINUXTYPE=targeted
```
• Configuration can be read by checking on /selinux pseudo-file system

```
# ls /sys/fs/selinux/ -lht
total 0
-rw-rw-rw-   1 root root    0 Nov 23 16:31 access
-rw-rw-rw-   1 root root    0 Nov 23 16:31 context
--w-------   1 root root    0 Nov 23 16:31 disable
-rw-r--r--   1 root root    0 Nov 23 16:31 enforce
-r--r--r--   1 root root 2.4M Nov 23 16:31 mls
-r--r--r--   1 root root    0 Nov 23 16:31 policy
-r--r--r--   1 root root    0 Nov 23 16:31 policyvers
```

• Or by using sestatus command

```
# sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: requested (insecure)
Max kernel policy version: 33
```
Access Control Mechanisms (ACM’s)

- Helps system administrators to control which users and processes can access different files, devices, interfaces etc.
- Examples
 - Discretionary Access Control
 - Access Control Lists
 - Mandatory Access Control
 - Role-based Access Control
 - Multi-Level Security
 - Multi-Category Security
• Discretionary Access Control
 ○ traditionally Linux based systems access control
 ○ users and groups can own a file, a process
 ○ ability to change permissions of own files
 ○ root user concept
- Mandatory Access Control
 - SELinux is one of examples
 - set of policies
 - working above DAC
 - no root user or anything similar
- Set of rules, guide the SELinux security engine
- Define types for file objects and domains for processes
- Uses roles to limit the domains that can be entered - assigns them to users
- Concept of types in SELinux
- Policy as a binary file

```bash
# ls /etc/selinux/ -lht
total 5.0K
-rw-r--r--. 1 root root  591 Mar  9  2018 config
-rw-r--r--. 1 root root 2.1K Mar  9  2018 semanage.conf
drwxr-xr-x. 4 root root 1.0K Mar  9  2018 targeted
# ls /etc/selinux/targeted/ -lht
total 4.0K
drwxr-xr-x. 4 root root 1.0K Mar  9  2018 contexts
drwx------. 2 root root 1.0K Mar  9  2018 policy
-rw-r--r--. 1 root root  539 Mar  9  2018 setrans.conf
-rw-r--r--. 1 root root   64 Mar  9  2018 seusers
```
• SELinux policies at the early stages of system start-up
 - initial SID assigning
 - mounting /proc - searching of selinuxfs
 - checking SELinux configuration
 - mounting /selinux
 - loading selected policy into the kernel
 - init re-executing, under new policy
 - start rest of boot process

dmesg | grep -i selinux
[0.238202] SELinux: Initializing.
[6.305588] SELinux: policy capability network_peer_controls=1
[6.305700] SELinux: policy capability open_perms=1
[6.305767] SELinux: policy capability extended_socket_class=1
[6.305906] SELinux: policy capability always_check_network=0
[6.306016] SELinux: policy capability cgroup_seclabel=1
[6.306127] SELinux: policy capability nnp_nosuid_transition=1
[6.306237] SELinux: policy capability genfs_seclabel_symlinks=0
[6.681054] systemd[1]: systemd 247.6+ running in system mode. (+PAM +AUDIT \
+SELINUX +IMA -APPARMOR -SMACK +SYSSVINIT +UTMP -LIBCRYPTSETUP -GCCRYPT -GNUTLS \
+ACL +XZ -LZ4 -ZSTD -SECCOMP +BLKID -ELFUTILS +KMOD -IDN2 -IDN -PCRE2 \
default-hierarchy=hybrid)
[8.666298] systemd[1]: Starting SELinux autorelabel service loading...
[8.688330] systemd[1]: Starting SELinux init for /dev service loading...
[10.061700] systemd[1]: Finished SELinux autorelabel service loading.
• targeted policy - example of less complex policy
• Every subject and object runs in the unconfined_t domain except for the specific targeted daemons
• unconfined_t means that there is no restrictions and the domain fall back to using DAC
• Only couple of daemons runs in their own domains - e.g. http and ntp which run in the httpd_t and ntpd_t domains, respectively

```
# ls /etc/ -Z
  system_u:object_r:etc_t:s0 X11
  system_u:object_r:etc_t:s0 iptables
  system_u:object_r:etc_t:s0 asound.conf
  system_u:object_r:etc_t:s0 rc5.d
  system_u:object_r:alsa_etc_t:s0 asound.conf
  system_u:object_r:etc_t:s0 issue
  system_u:object_r:etc_t:s0 rc6.d
```

• The opposite is the strict policy
 ○ every subject and object exists in specific domain
meta-selinux overview

- Repository: https://git.yoctoproject.org/cgit/cgit.cgi/meta-selinux/
- Branches: master, dunfell, hardknott

Latest Changes, Contributions

<table>
<thead>
<tr>
<th>Branch</th>
<th>Commit Message</th>
<th>Author</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>danny</td>
<td>Update maintainer list.</td>
<td>Xin Ouyang</td>
<td>8 years</td>
</tr>
<tr>
<td>denzel</td>
<td>Update maintainer list.</td>
<td>Xin Ouyang</td>
<td>8 years</td>
</tr>
<tr>
<td>dizzy</td>
<td>checkout: remove link against libfl.</td>
<td>Joe Slater</td>
<td>8 years</td>
</tr>
<tr>
<td>dora</td>
<td>psmisc: inherit enable-selinux and backend to fix build issue</td>
<td>Xin Ouyang</td>
<td>8 years</td>
</tr>
<tr>
<td>dora-next</td>
<td>libselinux: migrate SRC_URI to 2.2.2</td>
<td>Wenzong Fan</td>
<td>8 years</td>
</tr>
<tr>
<td>dunfell</td>
<td>MAINTAINERS: update email address</td>
<td>Armin Kuster</td>
<td>5 weeks</td>
</tr>
<tr>
<td>dylan</td>
<td>policycoreutils: fix genhomedircon construction</td>
<td>Joe Slater</td>
<td>8 years</td>
</tr>
<tr>
<td>fido</td>
<td>iscsi-initiator-utils: fix label for initiatormap.icsi</td>
<td>Wenzong Fan</td>
<td>7 years</td>
</tr>
<tr>
<td>gategarth</td>
<td>libselinux-python: Fix build error due to missing target config</td>
<td>Anatol Belski</td>
<td>8 months</td>
</tr>
<tr>
<td>hardknott</td>
<td>seclib: Security fix for CVE-2021-30887</td>
<td>Armin Kuster</td>
<td>2 months</td>
</tr>
<tr>
<td>jethro</td>
<td>MAINTAINERS: Update maintainers file</td>
<td>Joe MacDonald</td>
<td>6 years</td>
</tr>
<tr>
<td>jim/RELEASE_2.20190201</td>
<td>refpolicy: update to 2.2.20190201 and git HEAD policies</td>
<td>Joe MacDonald</td>
<td>3 years</td>
</tr>
<tr>
<td>master</td>
<td>coreutils/findutils: remove pkgconfig from bbappend</td>
<td>Mingli Yu</td>
<td>8 weeks</td>
</tr>
<tr>
<td>master-next</td>
<td>libselinux.inc: Add python-shell to libselinux-python RDEPENDS.</td>
<td>Chris Pelletito</td>
<td>3 years</td>
</tr>
<tr>
<td>morty</td>
<td>dhcpc: sync init-server with oe-core</td>
<td>Wenzong Fan</td>
<td>5 years</td>
</tr>
<tr>
<td>rocks</td>
<td>python-ipy: update SRC_URI to use https</td>
<td>Joe MacDonald</td>
<td>23 months</td>
</tr>
<tr>
<td>sumo</td>
<td>refpolicy: fix up all refpolicy 20170224 builds for sumo</td>
<td>Joe MacDonald</td>
<td>3 years</td>
</tr>
<tr>
<td>thud</td>
<td>refpolicy: Forward patch to apply cleanly on thud</td>
<td>Khem Raj</td>
<td>3 years</td>
</tr>
<tr>
<td>warrior</td>
<td>Update MAINTAINERS with new email addr</td>
<td>Mark Hatie</td>
<td>2 years</td>
</tr>
<tr>
<td>zeus</td>
<td>kernel: Remove non-existing kernel option</td>
<td>He Zhe</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Commits per Author per Quarter

<table>
<thead>
<tr>
<th>Author</th>
<th>Q1 2021</th>
<th>Q2 2021</th>
<th>Q3 2021</th>
<th>Q4 2021</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yi Zhao</td>
<td>42</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>Armin Kuster</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Anatol Belski</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Anibal Limon</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Kai Kang</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mingli Yu</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Glebysly Obitotsky</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Philip Tricca</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>4</td>
<td>20</td>
<td>0</td>
<td>69</td>
</tr>
</tbody>
</table>
Building instructions
- setting DISTRO_FEATURES

 DISTRO_FEATURES_append = " acl xattr pam selinux"

- specifying policy to use in build

 PREFERRED_PROVIDER_virtual/refpolicy ?= "refpolicy-mls"

- By default sysvinit as init manager is used
- Available targets
 - core-image-selinux
 - core-image-selinux-minimal
- Additional informations
 - changing refpolicy version
 - warning of possible problems with policies
- List of provided bbclasses

```bash
$ tree meta-selinux/classes/
meta-selinux/classes/
    ├── enable-audit.bbclass
    ├── enable-selinux.bbclass
    ├── meson-enable-selinux.bbclass
    ├── meson-selinux.bbclass
    ├── selinux.bbclass
    ├── selinux-image.bbclass
    ├── with-audit.bbclass
    └── with-selinux.bbclass
```

- Most of them just enable SELinux via PACKAGECONFIG
- Mentions about audit, enabling it in PACKAGECONFIG as well
• Most of the metadata are bbappends

```
$ find . -name *.bbappend
./recipes-graphics/mesa/mesa_%.bbappend
./recipes-graphics/xcb/libxcb_%.bbappend
./recipes-extended/tar/tar_%.bbappend
./recipes-extended/psmisc/psmisc_%.bbappend
./recipes-extended/pam/libpam_%.bbappend
./recipes-extended/cronie/cronie_%.bbappend
(...)
./recipes-connectivity/iproute2/iproute2_%.bbappend
./recipes-connectivity/openssh/openssh_%.bbappend
./recipes-devtools/prelink/prelink_git.bbappend
./recipes-devtools/rpm/rpm_%.bbappend
./recipes-devtools/python/python3-networkx_%.bbappend
./recipes-devtools/python/python3-decorator_%.bbappend
```

• Available policies

```
$ find . -name refpolicy*
./recipes-security/refpolicy
./recipes-security/refpolicy/refpolicy-minimum-git.bb
./recipes-security/refpolicy/refpolicy-common.inc
./recipes-security/refpolicy/refpolicy
./recipes-security/refpolicy/refpolicy-mls-git.bb
./recipes-security/refpolicy/refpolicy-targeted-git.bb
./recipes-security/refpolicy/refpolicy-standard-git.bb
./recipes-security/refpolicy/refpolicy-mcs-git.bb
./recipes-security/refpolicy/refpolicy-git.inc
```
• Also couple of selinux specific recipes

$ find selinux/ -name *.bb
selinux/selinux-init_0.1.bb
selinux/libselinux_3.2.bb
selinux/libsepol_3.2.bb
selinux/mcstrans_3.2.bb
selinux/selinux-sandbox_3.2.bb
selinux/secilc_3.2.bb
selinux/libsemanage_3.2.bb
selinux/libselinux-python_3.2.bb
selinux/restorecond_3.2.bb
(...)
selinux/selinux-autorelabel_0.1.bb
selinux/checkpolicy_3.2.bb
selinux/selinux-gui_3.2.bb
selinux/selinux-dbus_3.2.bb
selinux/selinux-labeldev_0.1.bb
• Building core image is quite straightforward, when using README
• Build was prepared with kas tool
• On 8 cores CPU, whole build last 277 minutes

```bash
$ time kas-docker build meta-conference/kas.yml
(...)
Build Configuration:
BB_VERSION = "1.50.0"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "universal"
TARGET_SYS = "i686-poky-linux"
MACHINE = "qemux86"
DISTRO = "poky"
DISTRO_VERSION = "3.3.4"
TUNE_FEATURES = "m32 core2"
TARGET_FPU = "" = "<unknown>:<unknown>"
meta-oe
meta-python = "hardknott:0b0ab6a2d227f22374268d29fcb8e4f9da56f5374b"
= "hardknott:8b94f828a292d0e61d83aeeeb4001c7cde08721"
meta
meta-poky
meta-yocto-bsp = "hardknott:fbd5ce2c50c78135675185b418ab53b170416ac25"
(...)
real 276m59.506s
user 0m9.435s
sys 0m16.061s
```
- Image build for qemu machine
- `runqemu` used to start the system
 - `slirp` and `serialstdio` flags used to launch in terminal

```
$ runqemu slirp serialstdio
runqemu - INFO - Running bitbake -e ...
runqemu - INFO - Continuing with the following parameters:
  KERNEL: [/work/build/tmp/deploy/images/qemux86/bzImage--5.10.76+git0+e1979ceb17_be6faea8fd-r0-qemux86-20211122162655.bin]
  MACHINE: [qemux86]
  FSTYPE: [ext4]
  CONFFILE: [/work/build/tmp/deploy/images/qemux86/core-image-selinux-qemux86-20211123170013.qemuboot.conf]
runqemu - INFO - Port forward: hostfwd=tcp::2222-:22 hostfwd=tcp::2323-:23
runqemu - INFO - Running /work/build/tmp/work/x86_64-linux/qemu-helper-native/1.0-r1/recipe-sysroot-native/usr/bin/qemu-system-i386 -device virtio-net-pci,netdev=net0,mac=52:54:00:12:35:02 -netdev user,ip=net0,hostfwd=tcp::2222-:22,hostfwd=tcp::2323-:23
runqemu - INFO - Running /work/build/tmp/work/x86_64-linux/qemu-helper-native/1.0-r1/recipe-sysroot-native/usr/bin/qemu-system-i386 -device virtio-net-pci,netdev=net0,mac=52:54:00:12:35:02 -netdev user,ip=net0,
  hostfwd=tcp::2222-:22,hostfwd=tcp::2323-:23,tftp=/work/build/tmp/deploy/images/qemux86
  -object rng-random,filename=/dev/urandom,id=rng0 -device virtio-rng-pci,rng=rng0
  -drive file=/work/build/tmp/deploy/images/qemux86/core-image-selinux-qemux86-20211123170013.rootfs.ext4,if=virtio,format=raw
  -cpu core2duo -m 256 -serial mon:stdio -serial null
  -kernel /work/build/tmp/deploy/images/qemux86/bzImage--5.10.76+git0+e1979ceb17_be6faea8fd-r0-qemux86-20211122162655.bin
  -append 'root=/dev/vda rw mem=256M ip=dhcp console=ttyS0 console=ttyS1 oprofile.timer=1'
  [    0.000000] Linux version 5.10.76-yocto-standard (oe-user@oe-host) (i686-poky-linux-gcc (GCC) 10.2.0, GNU ld (GNU Binutils) 2.36.1.20210209) #1 SMP PREEMPT Fri Oct 29 01:33:22 UTC 2021
```
Checking status of SELinux in booted system

```
root@qemu86:~# sestatus
SELinux status:                 enabled
SELinuxfs mount:                /sys/fs/selinux
SELinux root directory:         /etc/selinux
Loaded policy name:             targeted
Current mode:                   enforcing
Mode from config file:          enforcing
Policy MLS status:              enabled
Policy deny_unknown status:     allowed
Memory protection checking:     requested (insecure)
Max kernel policy version:      33
```

Checking system logs on boot

```
# dmesg | grep -i selinux
[ 0.249275] SELinux: Initializing.
[ 5.511707] SELinux: policy capability network_peer_controls=1
[ 5.511825] SELinux: policy capability open_perms=1
[ 5.511981] SELinux: policy capability extended_socket_class=1
[ 5.512117] SELinux: policy capability always_check_network=0
[ 5.512263] SELinux: policy capability cgroup_seclabel=1
[ 5.512612] SELinux: policy capability nnp_nosuid_transition=1
[ 5.512636] SELinux: policy capability genfs_seclabel_symlinks=0
[ 5.584558] systemd[1]: Successfully loaded SELinux policy in 223.105ms.
[ 5.778565] systemd[1]: systemd 247.6+ running in system mode. (+PAM +AUDIT +SELINUX \+IMA -APPARMOR -SMACK +SYSVINIT +UTMP -LIBCRYPTSETUP -GCRYPT -GNUTLS +ACL +XZ -LZ4 -ZSTD \-SECCOMP +BLKID -ELFUTILS +KMOD -IDN2 -IDN +PCRE2 default-hierarchy=hybrid)
[ 7.663127] systemd[1]: Starting SELinux autorelabel service loading...
[ 7.708807] systemd[1]: Starting SELinux init for /dev service loading...
```
• Checking system logs for audit inputs

Nov 23 17:54:50 qemux86 audit[215]: AVC avc: denied { bpf } for pid=215 comm="systemd" capability=39 \
 scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 \
tcontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 tclass=capability2 permissive=0
Nov 23 17:54:50 qemux86 audit[215]: AVC avc: denied { bpf } for pid=215 comm="systemd" capability=39 \
 scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 \
tcontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 tclass=capability2 permissive=0
Nov 23 17:54:50 qemux86 audit[215]: AVC avc: denied { bpf } for pid=215 comm="systemd" capability=39 \
 scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 \
tcontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 tclass=capability2 permissive=0
Nov 23 17:54:50 qemux86 audit[215]: AVC avc: denied { perfmon } for pid=215 comm="systemd" capability=38 \
 scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 \
tcontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 tclass=capability2 permissive=0
Nov 23 17:54:50 qemux86 audit[215]: AVC avc: denied { perfmon } for pid=215 comm="systemd" capability=38 \
 scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 \
tcontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 tclass=capability2 permissive=0
Nov 23 17:54:50 qemux86 audit[215]: AVC avc: denied { perfmon } for pid=215 comm="systemd" capability=38 \
 scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 \
tcontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 tclass=capability2 permissive=0
Nov 23 17:54:51 qemu86 systemd[1]: Started Session c1 of user root.
Nov 23 17:54:51 qemux86 audit[204]: USER_LOGIN pid=204 uid=0 auid=4294967295 ses=4294967295 \
subj=system_u:system_r:local_login_t:s0-s0:c0.c1023 msg="op=login acct="root" exe="/bin/login.shadow" \
hostname=qemux86 addr=? terminal=/dev/tty50 res=sucess'
Using audit2allow

root@qemux86:~# audit2allow --help
Usage: audit2allow [options]

Options:
- --version show program's version number and exit
- -h, --help show this help message and exit
- -b, --boot audit messages since last boot conflicts with -i
- -a, --all read input from audit log - conflicts with -i
- -p POLICY, --policy=POLICY Policy file to use for analysis
- -d, --dmesg read input from dmesg - conflicts with --all and --input
- -i INPUT, --input=INPUT read input from <input> - conflicts with -a
- -l, --lastreload read input only after the last reload
- -r, --requires generate require statements for rules
- -m MODULE, --module=MODULE set the module name - implies --requires
- -M MODULE_PACKAGE, --module-package=MODULE_PACKAGE generate a module package - conflicts with -o and -m
- -o OUTPUT, --output=OUTPUT append output to <filename>, conflicts with -M
- -D, --dontaudit generate policy with dontaudit rules
- -R, --reference generate repolicy style output
- -N, --noreference do not generate repolicy style output
- -v, --verbose explain generated output
- -e, --explain fully explain generated output
- -t TYPE, --type=TYPE only process messages with a type that matches this regex
- --perm-map=PERM_MAP file name of perm map
- --interface-info=INTERFACEINFO file name of interface information
- -x, --xperms generate extended permission rules
- --debug leave generated modules for -M
- -w, --why Translates SELinux audit messages into a description of why the access was denied
• Best to use audit2allow -a -w

```
# audit2allow -a -w

type=AVC msg=audit(1637690013.758:51): avc: denied { map } for pid=183 comm="dbus-daemon" \
path="/sys/fs/selinux/status" dev="selinuxfs" ino=19 scontext=system_u:system_r:system_dbusd_t:s0-s0:c0.c1023 \
tcontext=system_u:object_r:security_t:s0 tclass=file permissive=0

   Was caused by:
       Missing type enforcement (TE) allow rule.

   You can use audit2allow to generate a loadable module to allow this access.


type=AVC msg=audit(1637690090.567:74): avc: denied { bpf } for pid=215 comm="systemd" capability=39 \
scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 \
tcontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 tclass=capability2 permissive=0

   Was caused by:
       Missing type enforcement (TE) allow rule.

   You can use audit2allow to generate a loadable module to allow this access.


type=AVC msg=audit(1637690090.567:74): avc: denied { perfmon } for pid=215 comm="systemd" capability=38 \
scontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 \
tcontext=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 tclass=capability2 permissive=0

   Was caused by:
       Missing type enforcement (TE) allow rule.

   You can use audit2allow to generate a loadable module to allow this access.

(...)
```
- SELinux provide very configurable access control system
- The entry level seems high, but fortunately the basic security features are easy to implement
- meta-selinux is easy to integrate into a build, but from experience I can say that it's best to add it at an early stage of system design
- Discussed layer provide set of tools that help with implementing access control
We are open to cooperate and discuss

- contact@3mdeb.com
- facebook.com/3mdeb
- @3mdeb_com
- linkedin.com/company/3mdeb
- https://3mdeb.com
- Book a call
- Sign up for the newsletter

Feel free to contact us if you believe we can help you in any way. We are always open to cooperate and discuss.
Q&A