
Reducing Memory Usage at
Shard Library Use on Embedded
Devices

2007.02.22
Tetsuji Yamamoto,

Matsushita Electric Industrial Co., Ltd.
Masashige Mizuyama,

Panasonic Mobile Communications Co., Ltd.

[translated by Takao Ikoma]

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 2

Table of Contents
Background
Analysis
Method discussed
Lazy Loading

(overview, idea, implementation)

Results
Issues

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 3

Background(1)
In embedded systems such as cellular phones, features of applications
have grown up, so more dynamic libraries are getting linked (in some
cases, dozens of libraries are linked)
dependency among dynamic libraries gets complicated, unnecessary library for
the application, or library required only for a specific feature, must be linked

main(){
funcA();
funcB();

}

funcA(){
}
funcC(){

funcD();
}

funcB(){
}

funcD(){
}

app libA.so

libB.so

libD.so

For the dependency shown above, lib A, B and D should be linked;
but libD.so is not actually used, thus the memory for the library
is wasted.

CASE1

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 4

Background(2)

main(){
funcA(FALSE);
funcB();

}

funcA(bool X){
if(X){

func D();
} else {

func B();
}

funcB(){
}

funcD(){
}

app libA.so

libB.so

libD.so

For the structure shown above, funcD() is never called at runtime, but should
be linked.
→ To handle this with dynamic loading (dlopen(), dlsym()), both the
application and the libraries should be restructured, which would cost a lot

CASE2:

Would like to save this memory overhead for which
unused library is loaded.

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 5

Analysis(1)
How much of memory are used just by loading libraries?

When linking dynamic libraries, (even if not used) RAM of more than one page/library is
consumed (If the boundary between data region and bss region is not on a page boundary,
zeros are padded for bss initialization (one page used)
RAM is also used by rewriting .data/.got due to conflict

…
Section Headers: (librt.so.1)
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .note.ABI-tag NOTE 000000f4 0000f4 000020 00 A 0 0 4

[2] .hash HASH 00000114 000114 0004d0 04 A 3 0 4

[3] .dynsym DYNSYM 000005e4 0005e4 000840 10 A 4 2a 4

[4] .dynstr STRTAB 00000e24 000e24 0004ae 00 A 0 0 1

[5] .gnu.version VERSYM 000012d2 0012d2 000108 02 A 3 0 2

[6] .gnu.version_d VERDEF 000013dc 0013dc 00005c 00 A 4 3 4

[7] .gnu.version_r VERNEED 00001438 001438 0000b0 00 A 4 2 4

[8] .rel.dyn REL 000014e8 0014e8 0001c8 08 A 3 0 4

[9] .rel.plt REL 000016b0 0016b0 0001d8 08 A 3 b 4

[10] .init PROGBITS 00001888 001888 000014 00 AX 0 0 4

[11] .plt PROGBITS 0000189c 00189c 0003c0 04 AX 0 0 4

[12] .text PROGBITS 00001c5c 001c5c 003808 00 AX 0 0 4

[13] __libc_freeres_fn PROGBITS 00005464 005464 0000a0 00 AX 0 0 4

[14] .fini PROGBITS 00005504 005504 00000c 00 AX 0 0 4

[15] .rodata PROGBITS 00005510 005510 0003f8 00 A 0 0 4

[16] .interp PROGBITS 00005908 005908 000014 00 A 0 0 4

[17] .data PROGBITS 0000e000 006000 000070 00 WA 0 0 4

[18] __libc_subfreeres PROGBITS 0000e070 006070 000008 00 WA 0 0 4

[19] .eh_frame PROGBITS 0000e078 006078 000004 00 A 0 0 4

[20] .dynamic DYNAMIC 0000e07c 00607c 0000f0 08 WA 4 0 4

[21] .ctors PROGBITS 0000e16c 00616c 000008 00 WA 0 0 4

[22] .dtors PROGBITS 0000e174 006174 000008 00 WA 0 0 4

[23] .jcr PROGBITS 0000e17c 00617c 000004 00 WA 0 0 4

[24] .got PROGBITS 0000e180 006180 0001cc 04 WA 0 0 4

[25] .bss NOBITS 0000e34c 00634c 00ac60 00 WA 0 0 4

[26] .comment PROGBITS 00000000 00634c 00085e 00 0 0 1

.text

…

.rodata

.interp

.data

.dynamic
…

.bss

read
only

read
write

41a00000

41a01c5c

41a05510

41a05908

41a0e000

41a0e180

41a0e07c

41a0e34c

41a18fac

41a0efff

.got

RAM is used to
zero added up to
page boundary

Even if relinked,
rewriting may
occur,
i.e. RAM may be
used, for conflict
processing etc.

Unless prelinked,
RAM is used for
relocation

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 6

Analysis(2)

…
zero = l->l_addr + c->dataend;
zeroend = l->l_addr + c->allocend;
zeropage = ((zero + GL(dl_pagesize) - 1) & ~(GL(dl_pagesize) - 1));

…
if (zeropage > zero)
{

/* Zero the final part of the last page of the segment. */
if ((c->prot & PROT_WRITE) == 0)
{
/* Dag nab it. */
if (__builtin_expect (__mprotect ((caddr_t) (zero & ~(GL(dl_pagesize) - 1)),

GL(dl_pagesize), c->prot|PROT_WRITE) < 0, 0))
…

}
memset ((void *) zero, '¥0', zeropage - zero);
if ((c->prot & PROT_WRITE) == 0)
__mprotect ((caddr_t) (zero & ~(GL(dl_pagesize) - 1)),

GL(dl_pagesize), c->prot);
}

if (zeroend > zeropage)
…

_dl_map_object_from_fd() 内

Initialization part of .bss (ld.so (elf/dl-load.c))

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 7

c.f. On conflict in prelink
Cause of conflict occurence

Symbol->address mapping resolved with prelink may not be same for
the case it is resolved within libraries for which the library depends
on, and for the case resolved including exec file.

main(){
funcX()

};

Usual Case
app

extern int foo;
funcX(){

funcY();
}

int foo;
funcY(){
}

libX.so libY.so

app depends on libX.so, and libX.so depends
on libY.so
→no conflict in this case

extern int foo;
main(){

funcX()
};

app
extern int foo;
funcX(){

funcY();
}

int foo;
funcY(){
}

libX.so libY.so

Case with symbol copy
(R_ARM_COPY type)

For symbol referred in execution file, its entity is copied to
execution file side, so reference in libraries should be
modified (Current ARM compiler does not support –
znocopyreloc option, so behavior above can not be
suppressed)
→ Modify reference of foo in libX.so to app side (conflict)

Further, conflict information is generated when library dependency is insufficient at link time, or
when symbol is doubly defined.
Addresses whose symbols were resolved with prelink exist in .got/.data sections. These sections
may be modified.

As the reference of
the symbol changes,
.got/.data must be

rewriten

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 8

Methods Studied
What can we do to load required libraries only when

they work?
Plan1

Design with total consistency considering which libraries to use
→ Straightforward approach, but cost to manage several handreds libraries is prohibitive

Plan2
Implement with dynamic library loading (dlopen())
→ All of application and libraries implemented have to be fixed.
→Prelink is not applicable, and overhead of dlopen() (symbol resolution processing) is large

Plan3
Make loader/OS to automatically load libraries when required (when libraries are executed/accessed)
(lazyload)

main(){
funcA(FALSE);
funcB();

}

funcA(bool X){
if(X){

func D();
} else {

func B();
}

funcB(){
}

funcD(){
}

app libA.so

libB.so

libD.so
Example：CASE2:

Loaded as
accessed

This code is not
executed and funcD() is
not called, thus no
loading occurs

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 9

Lazy Loading (Mechanism)
Using memory fault to invoke handler of
loader,lazy load of library is implemented

0000:8000

4100:0000
4121:0000
41a5:8000
41c6:2000
4375:8000

4387:4000

…
libx.so : xxx()の実行

…

libx
xxx()

As prelinked,
address is
directly called
e.g.
call 43760000

Target of lazy load:

not loaded yet

libc.so

ld.so

As the space is not loaded
(nothing exists),

memory fault occurs!

addrinfo
4100:0000～4400:0000
(Library exists at the
address above)

kernel

Check if the fault
address (4376:0000)
is in the library area

ld.so
If so,

Fault handler:
Loads library (libx.so)
which should be
loaded at fault
address(4376:0000)

…
libx.so :

execute xxx()…

libx
xxx()

libc.so

ld.so

Restore the state
before fault and
continue processing
(execute xxx())

Loaded
when OS
started up

User Space
(after loading)

User Space
(beforer loading)

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 10

LazyLoading (Overview)
overview

Environment
Based on MontaVista CEE3.1(kernel 2.4.20, glibc 2.3.2) , modified Linux kernel、
glibc(ld.so).

Premise
Must be prelinked; load addresses fixed and bind processing done.
→Because fault is judged with load address
→If address resolution (BIND) has not been done, other libraries are loaded for
symbol search, and memory saving effect would be disappear

Overview of behavior
(1) Kernel loads library address information (at kernel bootup)
(2) Behavior at process invocation

Judge if lazy loading on
↓

Register fault handler to kernel
↓

mmap library as READ ONLY
↓

Build information (struct link_info) in loader
↓

unmap library
↓

To main()
(3) When a library is accessed after main() started, fault (segmentation fault) occurs

and control passed to ld.so handler → Judging from the fault address, the
designated library is loaded and return.

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 11

Lazy Loading (Change Log)
Major Placed Changed

Linux Kernel
arch/arm/kernel/call.S : Add system call

(for fault handler registration, obtaining register info at fault)
arch/arm/kernel/sys_arm.c : Replaced return PC address at fault
arch/arm/kernel/dlfault.c(new) : Handler code for fault
arch/arm/mm/fault-common.c : Branch at memory fault
init/main.c : Reading library address information

glibc (ld.so)
elf/rtld.c : Judging lazy loading, ON/OFF, fault handler, etc
elf/dl-load.c : Saving and loading load information for lazy loading
elf/dl-init.c : Initialization of library for lazy loading
elf/conflict.c : Conflict processing for lazy loading
include/link.h : Added variables for lazy loading

(load management, addr info)
sysdeps/genelic/ldsodefs.h : Added variables for lazy loading (ON/OFF)

Patches will be published on CELF web

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 12

Lazy Loading (Source Code: excerpts)
Jump from memory fault to handler with process below

do_bad_area(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr,
int error_code, struct pt_regs *regs)

{
/*
* If we are in kernel mode at this point, we
* have no context to handle this fault with.
*/

if (user_mode(regs)){
if(!search_dl_hash(addr)){ // search if in the library area

dl_fault_savereg(tsk,regs,addr); // save register info
dl_fault_setpc(tsk,regs); // rewrite return address to

// loader handler
}
else{

__do_user_fault(tsk,addr,error_code,SEGV_MAPERR,regs);
}

}
else

__do_kernel_fault(mm,addr,error_code,regs);
}

Fault handler

do_translation_fault()
arch/arm/mm/fault-common.c

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 13

Lazy Loading (Source Code: excerpts)
Kernel -> Load Handler -> Return with process below

static void _dl_lazy_trap_handler(void) {
unsigned regs[17];
unsigned addr;
struct link_map *l = GL(dl_loaded);
int found=0;
SWI_ARG2(270, &addr, regs); // Get register info

/* search maps */
for(;l;l = l->l_next){

// Search which part of the load address info (link_map)
// the fault address matches
…

}
if(!found){ // If not found, delete hadler registration and reinvoke fault

SWI_ARG1(269, NULL); /* clear handler */
} else {
if(l->l_lazy){ // Load if library has not been loaded yet

while(!compare_and_swap((long *)&(l->l_map_working), 0, 1))
usleep(30000); // Ugly; 30ms wait for race condition

if(l->l_lazy){ // Load if the library has not been loaded
_dl_map_object_lazy(l, GL(dl_locked_load_mode), 1); // Load the library

// Do conflict processing within function
_dl_init_lazy(l); // Call initialization of the library
l->l_lazy = 0; /* load finished */

}
while(!compare_and_swap((long *)&(l->l_map_working), 1, 0)){

usleep(30000); /* wait 30ms */
} } }
RETURN_TO_FAULTPROG((long)regs); // Restore the registers at fault

}

kernel

Return to just
before fault

elf/rtld.c

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 14

Optional Features
Can disable lazy loading per library
Objective:
(1) To avoid overhead for libraries which are always loaded

(libc.so, libpthread.so etc.)
(2) To make it possible to initialize for libraries which must always call

init before invocation (main())

Methods:
Specify library path in file /etc/ld.so.forbid_lazyload
→ compare in dl-load.c and judge if exception or not

Can set ON/OFF of lazy loading with environment variable
("DL_LAZY_LOAD")
→ For debug, evaluation

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 15

Lazy Loading (Results)
Results

Asssuming that each of 35 processes links to
40 libraries,and that 60% of them need not
be loaded any more,

35 x (40 x 0.6) x 4KB = 3.36M
→ more than 3.36MB would be reduced

(as an ordinary library consumes more than 4KB)
→Further, due to less virtual space required, PTE

cache is saved(up to several hundred kilobytes)
35 processes: common number of processes on PC Linux
40 libraries: Linux application (such that gnome related one) depends
on around 40 libraries
60%: Actual library use rate (actually measured on a single device)

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 16

Lazy Loading (Discussion)
Cosideration of other implementation
(features studied at implementation) Any
other method to hook first access of library?
→ Not found so far
Similar mechanism on existing libc

- lazy_binding
-- Function to defer symbol resolution. Effective for start
up performance but no effect to save memory

- filter
-- Usable for the part to incorporate symbol information
of library, but no use for our purpose

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 17

Issues
Improvement proposal welcome

Call sequence of init/fini not garranteed
No effect for libraries which dlopen()
Race condition at fault under multithread
Performance

While suppressing to load unused librares, no
improvement of start up time observed:

because of
mmap() -> read .dynamic etc -> unmap()

at start up (current unmap() is slow)

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 18

Issues (detail (1))
Issue of init/fini

For ordinary libraries, initializers are called from the bottom of dependency, and finalizers are called
in the reverse order
In the case of lazy loading, initializers are called when loaded, so the order is not warranteed (If not

loaded, its initializer is called at all).
But in many cases, there will not actually be any problem (In case that initialization, not the order

of the initialization, matters, the problem can be avoided by excluding the library from lazy loading)

app

libX.so

libpthread.so

libc.so

libY.so

Dependency

(Libpthread.so
depends on
libc.so, etc…)

Processing of
ordinary loader

order
init()
called

Processing of
Lazy loading

①

②

③

④

init: executed in the
order of loading,
regardless of
dependency; unless
loaded, not executed

③

④

②

① fini: only loaded
libraries are called in
the reverse order of
dependency

e.g. if initializer
initializes shared
memory which is
used by app

order
fini()
called

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 19

Issues (detail (2))
Issue of dlopen()

Library to do dlopen() searches symbols to be used, at loading (lookup)
At this processing, as symbol table of each library is looked up, even
unnecessary libraries are accessed and loaded on memory
(A tentative measure:) dyanmic link of the library to dlopen()

x
memory is not consumed (although some memory for management (link_info;
about 500B/library) is consumed).

app

libA.so

libB.so

libc.so
fopen()

libC.so

libxxx.so
{

fopen();
}

Symbol "fopen“ searched in
the order of dependency

libraries are
loaded, as
symbol tables
are accessed

Search
symbols

app

libA.so

libB.so

libc.so
substance of fopen()

libC.so

libxxx.so
fopen();

By linking, the
library is now target
of prelink,
and the symbol has
been resolved
before loading (can
omit lookup at
dlopen())

U
nused libraries w

on’t be loaded

dlopen(libxxx.so)

Link libxxx.so
to app

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 20

Issues (detail (3))
Race condition of library loading under multithread

Race condition for simultaneous faults under multiple threads has already been
considered
The problem occurs in case of race condition while loading

In such a case that task switches at library loading (while mmpap()'ing some of memory) and that another thread
accesses that memory (e.g. conflict processing has not been done yet and it may not be correct)

[A tentative measure:]
Fixed the order of load processing:
mmap() data region → conflict processing → mmap() text region

(Observing access behavior of library, text region turned out to be accessed first when accessing a new library())

Original Implementation
(Same order as loader
processing)

On thread race condition while loading library

text

data

text

data

text

bss

mmap() text mmap() data fix bss/conflict

at this timing
another thread may
access bss region
(bss region has not
been zeroed yet
⇒error

Current implementation

text

data data
bss

mmap() textmmap() data fix bss/conflict

data
bss

In most cases, first access of the
library start with some function
call (Scarcely data region access
comes first)

Execution request at this timing can
be caught as fault occurs
⇒ loader controls execution.

Here, as loading has
been completed,
no problem occurs

Reverse the
order to load

rewriting by conflict

2007/02/22
CE Linux Forum Japan Regional Technical Jamboree #13
Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd. 21

Thanks you

Special thanks to Takao Ikoma.(Translation Jp->En)

