KProbes Support for MIPS

Lubna, Vikas, Madhvesh

Sony India Software Centre
Contents

• Kprobes Overview
• Kprobes Internals
• MIPS Kprobes Design
• Kprobes Processing Flow For MIPS
• Limitations
Kprobes Overview

- Kprobes is simple and lightweight mechanism to collect debugging information dynamically.
- What is a Probe?
 - An explanatory action designed to investigate and obtain information on unknown region.
- Can be used to collect information in the interrupt handler with minimal disruption.
- Linux main line kernel 2.6.16 (and later) includes support for
 - x86, ppc64, Sparc, IA64, x86_64
- We have implemented Kprobes support for MIPS Arch for vanilla kernel 2.6.16-24.
Kprobes Overview (Contd)

• Kprobes introduces kernel probes and their corresponding probe handlers from the user to the kernel code.
• A kernel probe is a set of handlers placed on a certain instruction address.
• Kprobe mainly contains three handlers
 • Pre-Handler
 • Post-Handler
 • Fault Handler
Kprobes Overview (Contd)

- **Pre-Handler**
 - Executed before the probed instruction
 - It can be used to dump the register contents before executing the probed instruction

- **Post-Handler**
 - Executed after the probed instruction
 - It can be used to dump the register contents after executing the probed instructions

- **Fault Handler**
 - Executed When some fault occur in pre handler or post handler or in the instruction being debugged
Kprobes Internals

Kprobes Management (Arch Independent)

Includes:
- Initializing the kprobes
- Register kprobes
- Deregister kprobes
Kprobes Internals (Contd)

Code Flow for register_kprobe()

(kernel_module)
Kprobe module (Init)
(kernel/kprobe.c)

register_kprobe()
__register_kprobe()
Get_kprobe()

arch_prepare_kprobe()
arch_arm_kprobe()

register_aggr_kprobe()
add_aggr_kprobe()
copy_kprobe()
add_new_kprobe()

(If single probe or multiple probes at different probe point)

(If multiple probes at the same probe point)

get_insn_slot()

ARCH Dependent
Kprobes Internals (Contd)

Code Flow for deregister_kprobe()

1. Kprobe module (Exit)
2. Unregister_kprobe()
3. get_kprobe()
 - (If single probe or multiple probes at different probe point)
 - (If multiple probes at the same probe point)
4. arch_disarm_kprobe()
5. Clean_up = 1
6. arch_remove_kprobe()
7. free_insn_slot()
8. ARCH Dependent

(kernel/kprobe.c)
MIPS Kprobes Design

- MIPS Arch does not have single step instruction.
- MIPS “break” instruction is used to implement kprobes breakpoint and single step operations
- Break instruction format is

<table>
<thead>
<tr>
<th>SPECIAL</th>
<th>code</th>
<th>BREAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>26</td>
<td>25</td>
</tr>
</tbody>
</table>

- The “code” field is utilized in implementing kprobes as below
- Code Field = 0 (BRK_USERBP): Indicates break point put by kprobes to probe the instruction to be debugged. (break0=0x0000000d)
- Code Field = 5 (BRK_SSTEPBP): Indicates software single step to debug the probed instruction. There is no hardware single-stepping on MIPS. Hence software single stepping is implemented with breakpoint trap break 5. (break5=0x0000014d)
MIPS Kprobes Design (Contd)

Original instruction

Insn1
Insn2

Original instruction replaced by break

Insn2

Pre handler

PC

Post handler

PC

New Executable Page (Stores Original Instruction for Single Step)

Copied instruction

Insn1

Break 5

PC
MIPS Kprobes Design (Contd)

- When a particular instruction “Insn1” is probed, Kprobes will copy the original instruction on the executable page and replaces the probed instruction by ‘break 0’ i.e 0x0000000d
- ‘break 5’ (0x0000014d) will be copied on the executable page after the original probed instruction
- A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.
- When break 0 is hit, kprobes exception notifier will be called by the exception handler do_break() with the die value DIE_BREAK. This will in turn call kprobe_handler() which performs executing pre_handler() associated with kprobes.
MIPS Kprobes Design (Contd)

- kprobe_handler() takes care of moving program counter to the copied instruction by calling prepare_single_step().

- After executing the probed instruction, the next instruction on the copied page ‘break 5’ will be executed.

- When break 5 is hit, again kprobes exception notifier will be called by the exception handler do_break() with the die value DIE_SSTEPBP. This will in turn call user defined post_handler().

- After the instruction debugging, the execution resumes to the next instruction “Insn2”
Kprobes Processing Flow For MIPS

MIPS Generic Processing

1. **Kprobes Processing Flow**
 - **(arch/mips/kernel/genex.S)**
 - **break 0** → **Do_break()**
 - **(arch/mips/kernel/traps.c)**
 - **break 5** → **Do_break()**
 - **tlb_do_page_fault** → **do_page_fault()**
 - **notify_die()**
 - **notifier_call_chain()**
 - **notifier_call**

2. **MIPS Specific Processing**
 - **DIE_BREAK**
 - **DIE_SSTEPBP**
 - **DIE_PAGE_FAULT**
Kprobes Processing Flow For MIPS (Contd)

1. notifier_call (a call is made to kprobe_exceptions_notify)

- kprobe_exceptions_notify()
 - MIPS Kprobes Processing For a single/Multiple Probes at different probe point
 - Break 0
 - kprobe_handler()
 - User specified Pre handler
 - Prepare_single_step()
 - set_current_kprobe()
 - get_kprobe()
 - User specified Fault handler
 - User specified post handler
 - resume_execution()
 - User specified post handler
 - Resume execution()

- tlb_do_page_fault()
 - Break 5
 - post_kprobe_handler()
 - User specified post handler
Kprobes Processing Flow For MIPS (Contd)

1. notifier_call (a call is made to kprobe_exceptions_notify)

MIPS Kprobes Processing For a Multiple Probes at the same probe point

kprobe_exceptions_notify()

post_kprobe_handler()

aggr_post_handler()

User specified post handler

resume_execution()

User specified Fault handler

aggr_fault_handler()

kprobe_fault_handler()

kprobe_handler()

aggr_pre_handler()

User specified Pre handler

Prepare_single_step()
Limitations

• Kprobe cannot be set for branch and jump instructions
• Not tested in SMP configuration