
SLTS Kernel and Base-Layer

Development in the

Civil Infrastructure Platform

Yoshitake Kobayashi

Embedded Linux Conference, Portland, February 21-23, 2017

1

2

Our Civilization is Run by Linux

https://www.airpano.com/360Degree-VirtualTour.php?3D=San-Francisco-USA

3
https://www.airpano.com/360Degree-VirtualTour.php?3D=San-Francisco-USA

Transport Energy Industry Others

Rail automation

Automatic ticket gates

Vehicle control

Power Generation

Turbine Control

Industry automation

Industrial communication

CNC control

Building automation

Healthcare

Broadcasting

4

But there are issues to be

solved…

https://www.airpano.com/360Degree-VirtualTour.php?3D=San-Francisco-USA

5

A Railway System:
25-50 years products life-cycle

with very reluctant nature for product update and upgrade of hardware and

base software platform

Image: http://www.deutschebahn.com/contentblob/10862328/20160301+Stw+M%C3%BClheim+Innenansicht+1+(1)/data.jpg

Railway Example

6

3 – 5 years development time

2 – 4 years customer specific extensions

1 year initial safety certifications / authorization

3 – 6 months safety certifications / authorization for follow-up releases

(depending on amount of changes)

25 – 50 years lifetime

Image: http://www.deutschebahn.com/contentblob/10862328/20160301+Stw+M%C3%BClheim+Innenansicht+1+(1)/data.jpg

What we have done on Linux for civil infrastructure systems

• Improve real-time performance and test
• Improve reliability and test
• Improve security and test
• Improve stability and test
• Create a lot of documents and review

• Open source software licenses compliance
• Export control classification

• Then, support for long-time such as 20-60 years
• ...

7

8

We have a problem…

The Problems we face …

• The systems that support our modern civilization need to survive for a VERY
LONG TIME. Until now the corresponding industrial grade super long term
maintenance has been done by each individual companies.

• These systems not only have to survive for a long time, they must be
“INDUSTRIAL GRADE” (robust, secure and reliable). And at the same time
the industry will also need to catch up with the latest technology trends

9

The Solutions we need …

• We need a Collaborative framework to maintain one same open
source based system for many, many, many years to keep it secure,
robust and reliable.

• AND most importantly, we need to do this collaboratively in the
upstream communities, not locally.

10

LONG TERM
MAINTENACE

INDUSTRIAL
GRADE

Collaborative
Development

Establishing an Open Source Base Layer of
industrial-grade software to enable the use
and implementation of software building
blocks for Civil Infrastructure Systems

11

CIP is our solution…

https://www.cip-project.org/

https://www.cip-project.org/

Requirements for the Civil infrastructure systems

13

Industrial
Grade

• Reliability

• Functional Safety

• Security

• Real-time capabilities

Sustainability
• Product life-cycles of 10

– 60 years

Conservative
Upgrade/Upd
ate Strategy

• Firmware updates only
if industrial grade is
jeopardized

• Minimize risk of
regression

• Keeping regression test
and certification efforts
low

This has to be achieve with …

Development time

 Shorter development times for
more complex systems

Maintenance costs

 Low maintenance costs for
commonly uses software
components

 Low commissioning and update
costs

Development costs

 Don‘t re-invent the wheel

Things to be done: Creation of “Open Source Base Layer”

14

U
se

r
sp

ac
e

H
ar

d
w

ar
e

K
e

rn
el

• Open source based
reference
implementation

• Strat from a minimal set
for the controllers in the
industrial grade systems

Open
Source

Base Layer

CIP Reference Hardware

CIP Reference

Filesystem image with SDK

(CIP Core packages)

CIP SLTS Kernel

Non-CIP packages

Any Linux distribution (e.g. Yocto Project, Debian,
openSUSE, etc.) may extend/include CIP packages.

Scope of activities
U

se
r

sp
ac

e
K

er
n

el
 s

p
ac

e

Linux Kernel

App container
infrastructure (mid-term)

App Framework
(optionally, mid-term)

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config.

& logging

Real-time support
Real-time /

safe virtualization

Tools Concepts

Build environment
(e.g. yocto recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety
architecture/strategy,
including compliance
w/ standards (e.g., NERC
CIP, IEC61508)

Long-term support
Strategy:
security patch
management

Standardization
collaborative effort with
others

License clearing

Export Control
Classification

On device software stack Product development
and maintenance

Application life-

cycle management

Security

15

Multimedia

Technical topics and related projects (Feb. 2017 version)

w

Linux Kernel

Userland Isolation

LXC Cgroups

Heterogeneous

Computing

SoC FPGA

Middleware / Tools

Application support

App Framework HMI Framework FW update App deployment

Configuration/Device management

Configuration Industrial Zeroconf

Domain specific and IoT communication

OPC UA

Avnu

Echonet

Industrial special-purpose protocols

Functional Safety

SIL3 supportSIL2LinuxMP

Monitoring/error detection

RTOS

OM2M

Security

LSM

Anomaly detection

SELinux

Kernel Isolation

Communication

Jailhouse

SafeG

Real-time support

PREEMPT-RT

GPGPU/FPGA real-time

Xenomai

RT/non-RT communication

Live patching

Monitoring / Tracing

RAS

Ftrace ktap

Coherent Security Mechanisms

Hardware / SoC (x86 or ARM based)

To be specified / implemented by CIP Integration / cooperationLegend

16

`I

Testing

kselftest

CIP test suite

FuegoLTP

Infrastructure and Services

Support

SLTS

Development process

SIL3 supportSIL2 support

Legal topics SPDX

Export ControlLicense Clearing

FOSSology

Backwards compatibility

Build and production

Yocto Project

TSN

Multimedia Common issues

Y2038

KernelCI

Debian build system

* Topics will be added or removed to reflect CIP technical interests

Scope of activities
U

se
r

sp
ac

e
K

er
n

el
 s

p
ac

e

Linux Kernel

App container
infrastructure (mid-term)

App Framework
(optionally, mid-term)

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config.

& logging

Real-time support
Real-time /

safe virtualization

Tools Concepts

Build environment
(e.g. yocto recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety
architecture/strategy,
including compliance
w/ standards (e.g., NERC
CIP, IEC61508)

Long-term support
Strategy:
security patch
management

Standardization
collaborative effort with
others

License clearing

Export Control
Classification

On device software stack Product development
and maintenance

Application life-

cycle management

Security

17

Multimedia

Current status of CIP base layer development

• CIP SLTS kernel development
• Decide the CIP kernel version

• 4.4 as first CIP kernel. Maintenance expected for 10 years and more (SLTS).

• Select a maintainer
• Ben Hutchings as initial CIP-kernel maintainer

• Define a kernel maintenance policies
• https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance

• Start maintenance
• Linux 4.4.48-cip2 released on 10th February 2017

• Create CIP kernel test framework

• CIP core package development
• Define an initial component set
• Define component version
• Contribute to upstream project
• Start maintenance for SLTS

18

https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance

19

CIP SLTS Kernel Development

Overview of CIP SLTS kernel

• Kernel trees
• CIP SLTS (linux-4.4.y-cip)

• Official CIP SLTS kernel tree

• https://git.kernel.org/cgit/linux/kernel/git/bwh/linux-cip.git/

• Based on linux-stable.git

• Maintainer: Ben Hutchings

• Validation will be done by CIP

• CIP SLTS+PREEMPT_RT (will be separately maintained by CIP members)
• CIP kernel tree based on linux-stable-rt and patches from CIP SLTS

• Validation will be done by CIP

• Maintenance period
• 10 years and more (10-20 years)

20

https://git.kernel.org/cgit/linux/kernel/git/bwh/linux-cip.git/

CIP SLTS Kernel development trees

21

Mainline

Stable (linux-stable)

4.4

CIP SLTS (linux-4.4.y-cip)

Stable-rt

CIP SLTS-rt/with FB

1. Feature backports

2. Security fix only

+PREEMPT_RT Follow the CIP SLTS with
PREEMPT_RT

Validate by CIP members

Backported
patches

Maintained by Ben Hutchings
Take over from

maintainer

Take over from
maintainer

CIP SLTS Kernel development

• Kernel maintenance policy
• https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance
• Follow the stable kernel development rule as the basis
• Feature backports are acceptable

• All features has to be in upstream kernel before backport to CIP kernel

• CIP has “Upstream first” policy

• Validation will be done by CIP test infrastructure and/or members

• Current backported features on 4.4.y-CIP
• Kernel Self Protection Project related features

• Address Space Layout Randomization for user space process (ASLR)
• GCC’s undefined behaviour Sanitizer (UBSAN)
• Faster page poisoning

22

https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipkernelmaintenance

Out-of-tree drivers

• In general, all out-of-tree drivers are unsupported by CIP

• Users can use CIP kernel with out-of-tree drivers
• If a bug is found in such a modified kernel, users will first demonstrate that it

exists in the CIP kernel source release in order for the CIP maintainers to act
on it.

23

Major version release cycle (Next CIP SLTS kernel version)

• CIP will take a LTS kernel every 2-4 years

• Planning to synchronize with LTSI for next CIP SLTS kernel
• LTSI: http://ltsi.linuxfoundation.org/

24

25

CIP testing

Purpose of CIP testing

• Detecting bugs

• Detecting regressions

• Provide test results in a timely manner

26

Milestones of CIP testing and current status

1. Board at desk - single dev
• A setup that allows a developer to test the CIP kernel on the CIP selected hardware platform

connected locally to her development machine using kernelCI tools.

2. CIP kernel testing
• Test the CIP kernel on a regular basis and share the results with other CIP community members.

3. Define kernel testing as a service within CIP
• Define the testing environment within CIP assuming that, in some cases, some members may

share the tests, test results or laboratories while others may not.

4. From kernel testing to system testing
• Once the testing environment has been ready and works for the kernel, explore how to extend

it to the entire CIP platform.

https://wiki.linuxfoundation.org/civilinfrastructureplatform/ciptesting

27

https://wiki.linuxfoundation.org/civilinfrastructureplatform/ciptesting

CIP kernel testing: Board at desk - single dev

28

• Goal
• Create and publish a VM image that contains KernelCI & LAVA
• Single developer can test the CIP kernel (or any other kernels)

• Current status
• Kernel CI and LAVA have been merged into one VM
• Beta version just released!
• https://gitlab.com/cip-project/board-at-desk-single-dev

• Next step
• Collaborate with other testing projects such as kernelCI, LAVA

and Fuego
• CIP members plans to join Fuego BoF @ ELC (Thursday

12:10pm at Skyline II)

https://gitlab.com/cip-project/board-at-desk-single-dev

29

CIP Core package Development

Current status of Base layer development

1. Define an initial component set

2. Define component version

3. Contribute to upstream project

4. Start maintenance for SLTS

30

Current status of Base layer development

1. Define an initial component set

2. Define component version

3. Contribute to upstream project

4. Start maintenance for SLTS

31

1.5 Talk to upstream maintainer

Initial component set for CIP base layer

• Flex

• Bison

• autoconf

• automake

• bc

• bison

• Bzip2

• Curl

• Db

• Dbus

• Expat

• Flex

• gawk

• Gdb

32

CIP Start from a minimal set of packages. “CIP kernel” and “CIP core” packages run on hardware.

NOTE: The maintenance effort varies considerably for different packages.

CIP Core
Packages

CIP
Kernel

Dev
packages

• Kernel
• Linux kernel 4.4 + backported patches

• PREEMPT_RT patch

• Bootloader
• U-boot

• Shells / Utilities
• Busybox

• Base libraries
• Glibc

• Tool Chain
• Binutils

• GCC

• Security
• OpenSSL

• Git

• Glib

• Gmp

• Gzip

• gettext

• Kbd

• Libibverbs

• Libtool

• Libxml2

• Mpclib

• Mpfr4

• Ncurses

• Make

• M4

• pax-utils

• Pciutils

• Perl

• pkg-config

• Popt

• Procps

• Quilt

• Readline

• sysfsutils

• Tar

• Unifdef

• Zlib

Keep these packages for Reproducible buildCandidates for initial component set

CIP Project X (Project name is tentative)

• Started an incubation project for minimum base system
• This project will provide the way to test the installable image

• Goal
• Input: Debian sources and cip kernel

• Build mechanism: bitbake and/or Debian build system

• Output: Minimum deployable base system

33

Development plan

34

CIP will increase the development effort to create a industrial grade common base-layer

Phase 1:
• Define supported kernel

subsystems, arch.
• Initial SLTS component selection
• Select SLTS versions
• Set-up maintenance

infrastructure (build, test)

Phase 2:
• Patch collection, stabilization, back

port of patches for CIP kernel
packages

• Support more subsystems
• Additional core packages

Core
Packages

Kernel
(SLTS)

Phase 3:
• Domain specific enhancements,

e.g. communication protocols,
industrial IoT middleware

• Optionally: more subystems
• Optionally: more core packages

add. pkgs

Core
Packages

Kernel
(SLTS)

add. pkgs

Core
Packages

Kernel
(SLTS)

Summary

• Selected the first CIP kernel and initial maintainer
• 4.4 as first CIP kernel. Maintenance expected for above 10 years (SLTS).

• Ben Hutchings as initial CIP kernel maintainer.

• Define CIP Kernel maintenance policies.

• Defined initial board platforms and provide support for them.
• Beaglebone Black and (RENESAS BOARD) as initial boards.

• CIP kernel testing
• Board @ desk - single developer.

• Kernel CI and LAVA have been merged into one VM.

• Started CIP Project X
• Goal: create a minimum deployable base system.

35

36

Next steps

Next step by CIP

• Board @desk - Single dev
• Release kernelci VM and test CIP kernel in the open within CIP group.

• Increase test coverage.

• Define milestone 2.

• Improve integration with Fuego and LAVA.

• Kernel maintenance: define next steps.

• Analysis: select additional software as part of CIP base layer.

• Collaboration: kernelci.org, Fuego, y2038, KSPP, Real-Time Linux

37

38

Please Join us!

Why join CIP?

• Steer
participate in project decisions and technical direction.

• Participate
bring your use cases and ideas to the right forum.

• Learn
by working on daily basis in the open with others with common interest.

• Collaborate
share effort and knowledge. Stand on the shoulders of giants.

39

Contact Information and Resources

To get the latest information, please contact:
• Noriaki Fukuyasu: fukuyasu@linuxfoundation.org

Other resources
• CIP Web site: https://www.cip-project.org

• CIP Mailing list: cip-dev@lists.cip-project.org

• CIP Wiki: https://wiki.linuxfoundation.org/civilinfrastructureplatform/

• Collaboration at CIP: http://www.gitlab.com/cip-project

• CIP kernel: git://git.kernel.org/pub/scm/linux/kernel/git/bwh/linux-cip.git

40

mailto:fukuyasu@linuxfoundation.org
https://www.cip-project.org/
mailto:cip-dev@lists.linuxfoundation.org
https://wiki.linuxfoundation.org/civilinfrastructureplatform/
http://www.gitlab.com/cip-project
http://git.kernel.org/pub/scm/linux/kernel/git/bwh/linux-cip.git

Call for new participants!

41

Provide a super long-term maintained industrial-

grade embedded Linux platform.

Platinum Members

Silver Members

http://cip-project.org/
http://cip-project.org/

42

Questions?

43

Thank you!

44

