dl'm-S0C

Silly kernel hackers! Socks are for feet.

Olof Johansson, Google

Mandatory ARM Linux history slide

Maintained by Russell King since the dawn of time
Patch volume from platform vendors grew too large to
keep up with

Around 2009, platform maintainers started merging
straight to Linus

Famous March 2011 blow-up from Linus

arm-soc started by Arnd Bergmann in July 2011

| joined in November 2011

As of August 2012, Linus was generally happy with the
state of affairs

What problems does arm-soc solve?

e Lack of coordination and sharing between platforms
e Keeping a code quality bar

e Code review of merged code

e Bringing online new platform maintainers

e Gives a common view of what's going on across the

various vendors

"The board file mess"”

e One of the major things Linus was unhappy with
e Lack of standardized software platform (c.f. x86 ACPI)
e Hardware vendors try to differentiate by hardware
design
e This spills over into unnecessary software differentiation
e Resulting in
o Code and infrastructure duplication
o Per-platform abstractions (OMAP hwmod, etc)

o ...or worse, lack of abstraction all together

"The board file mess": Solutions?

e Device tree conversion

o Remove need for code changes for minor (or major)
hardware changes

e Single zlmage
o Solves a different problem (for distros)
o Has required a lot of very useful cleanups

e UEFI/ACPI?

o Greener grass? Painted gravel?

"The board file mess"”

In reality a combination of all of the above is
happening
e | ots of code refactoring and cleanup

o Splitting out to proper drivers and subsystems

e Separating hardware description from code
o DT, ACPI

e The road has been long and somewhat
painful
e ... and still ongoing

e Lots of cleanup, but also lots of churn

Churn, you say?

3.8-rc1 announcement from Linus:

"18% was architecture updates (with various
ARM platforms being the bulk of it as usual,
sigh).”

Two years later, are we getting in trouble
again?

3.8 merge window

e |Large churn due to header file moves

e Unusual number of internal conflicts
o This is mostly something for me and Arnd to deal

with
e Holidays and vacations, including Stephen
Rothwell

o Code merged during that time didn't get early notice
of conflicts with other trees

e ARM (and dts) code merged through other

maintainers
o Platform maintainers weren't even cc:d
o ...but sfr noticed the conflicts and so should we

All doom and gloom? No.

e \We're still doing well

Tweaking our internal merge resolution

e Keeping a closer eye on sfr's merge conflict
emails

e Some of the larger code moves are nearing

completion
o Single zlmage in particular

e Code quality is still good

...but we need to keep an eye on the long game

So, you have an ARM platform to upstream?

e Expect a bit of learning curve
o Even for experienced maintainers of other areas
o Be flexible and expect to shuffle patches around

e Non-linear tree organization and merge

structure

o Not just one large branch that merges everything

o Because of this, developer and maintainer workflow
differs more than some other subsystems

o Categories vs topics

Topic (feature) branches

e Inherent to developer workflow

Keeps related changes together

e Usually builds up several short series of
patches

e Independent series kept on separate
branches

e Posting of patch series for review, etc

e Keeping series as one unit is useful for
testing

Typical topic branch

Of{wH- MHm

Convert existing code to use new feature
Add new feature
Fix an existing bug

Cleanup/refactor

arm-soc categories

e Used instead of topics
e Top-level branch organization
e Usually consists of:

next/fixes-non-critical
next/cleanup
next/multiplatform
next/soc

next/drivers
next/boards

next/dt

Mapping topics into categories

e Done by the platform maintainers

e Useful for developers to know
o QOrganizing your patch series appropriately

e Maintainer splits a series into the categories
when applying
o Cleanup patches go into cleanups, fixes to fixes,
SoC common changes to soc branch, etc etc
e Base branches on top of each other
o Allows for dependent patches to go in separate

categories
o Avoid circular dependencies!

Mapping topics into categories

-

-

-

A few words about bisectability

e Be careful to keep bisectability across
branches

e Linear history vs branches

M:

cleanup
feature
merge commit

for-next

next/cleanup

M
next/<feature>
F
|
F
|
M
F
C |
| F

More complicated cases

e In reality, some patches go through other
trees

e How to handle dependencies?
o Device tree conversions
o Adding platform data contents
o New drivers that need platform plumbing

General rules of dependencies

Adding an external dependency is a three-

way handshake

o You (platform maintainer)
o Other subsystem maintainer
o arm-soc maintainers

Always do it over email, not IRC
Patches need to be on a 100% stable

branch
o Never, ever rebased

Pulled into both trees (driver + arm-soc)
Might merge up through arm-soc if we
merge first

External dependencies: New driver

e Easy case

e Driver patch goes through driver maintainer
o Or, have him give you an Acked-by with agreement
to merge through arm-soc
o Preference varies between maintainers
o Depends on what other work they have going on
with their own tree

e Add DT entries in branch through arm-soc

Bisectability should be preserved
o Even if driver and DT is merged separately,
bisectability is kept -- driver just won't probe

External dependencies: DT conversion

e Doesn't have to be complicated
e Driver patch to maintainer to fill

platform_data from device tree
e DT update through arm-soc

e Keep platform_device/data for one release
o Avoids extra dependencies

e Next release, remove platform_device

registration
o Everybody loves code removal!

External dependencies: platform data

e This can be messy

e Same as new driver: If maintainer acks,
merge through arm-soc

e |f you can easily make the driver work with

both new and old data, do it
o Avoids dependency, remove fallback in next release

e If not, stage a patch that adds structure

members in a separate branch

o Base driver patch on this for the driver tree
o Merged into arm-soc

e Use your judgement on which approach to
take

Dos and Dont's

e \Want us to apply a patch directly? Tell us, don't assume
we will
O We get a lot of patches our way, most for review
e Send pull requests early
e Ask downstream users to use our tree
O Avoids locking in your downstream users before code is accepted
O Repeated pull requests of the same branches are fine
e Send your pull requests using signed tags

O Provides a place to document the contents and makes it easy for us to
include in the merge.

e Test arm-soc for-next branch and linux-next!
O Short-circuits the loop on breakage
O Keep your platform bisectable

Summary

arm-soc and ARM platform development is
still going strong
Need to be diligent about merge paths to

avoid conflicts

o Make sure your developers know where to submit
code!

Getting used to our merge flow might take a

couple of releases

o Study existing maintainers workflow
o Avoid downstream direct users until you're more
familiar

Still awake?

Questions?

What will be new in 3.9

IRQ controller and timer cleanups

OMAP2+ multiplatform

WM8x50 support

Tegra T114 support

Samsung header moves towards multiplatform
shmobile switches to pinctrl

zynq support for real hardware (SMP)

