
arm-soc
Silly kernel hackers! Socks are for feet.

Olof Johansson, Google



Mandatory ARM Linux history slide

● Maintained by Russell King since the dawn of time
● Patch volume from platform vendors grew too large to 

keep up with
● Around 2009, platform maintainers started merging 

straight to Linus
● Famous March 2011 blow-up from Linus
● arm-soc started by Arnd Bergmann in July 2011
● I joined in November 2011
● As of August 2012, Linus was generally happy with the 

state of affairs



What problems does arm-soc solve?

● Lack of coordination and sharing between platforms

● Keeping a code quality bar

● Code review of merged code

● Bringing online new platform maintainers

● Gives a common view of what's going on across the 

various vendors



"The board file mess"

● One of the major things Linus was unhappy with

● Lack of standardized software platform (c.f. x86 ACPI)

● Hardware vendors try to differentiate by hardware 

design

● This spills over into unnecessary software differentiation

● Resulting in

○ Code and infrastructure duplication

○ Per-platform abstractions (OMAP hwmod, etc)

○ ...or worse, lack of abstraction all together



"The board file mess": Solutions?

● Device tree conversion
○ Remove need for code changes for minor (or major) 

hardware changes

● Single zImage
○ Solves a different problem (for distros)
○ Has required a lot of very useful cleanups

● UEFI/ACPI?
○ Greener grass? Painted gravel?



"The board file mess"

In reality a combination of all of the above is 
happening
● Lots of code refactoring and cleanup

○ Splitting out to proper drivers and subsystems
● Separating hardware description from code

○ DT, ACPI
● The road has been long and somewhat 

painful
● ... and still ongoing

● Lots of cleanup, but also lots of churn



Churn, you say?

3.8-rc1 announcement from Linus:

"18% was architecture updates (with various 
ARM platforms being the bulk of it as usual, 
sigh)."

Two years later, are we getting in trouble 
again?



3.8 merge window

● Large churn due to header file moves
● Unusual number of internal conflicts

○ This is mostly something for me and Arnd to deal 
with

● Holidays and vacations, including Stephen 
Rothwell
○ Code merged during that time didn't get early notice 

of conflicts with other trees
● ARM (and dts) code merged through other 

maintainers
○ Platform maintainers weren't even cc:d
○ ...but sfr noticed the conflicts and so should we



All doom and gloom? No.

● We're still doing well
● Tweaking our internal merge resolution
● Keeping a closer eye on sfr's merge conflict 

emails
● Some of the larger code moves are nearing 

completion
○ Single zImage in particular

● Code quality is still good

...but we need to keep an eye on the long game



So, you have an ARM platform to upstream?

● Expect a bit of learning curve
○ Even for experienced maintainers of other areas
○ Be flexible and expect to shuffle patches around

● Non-linear tree organization and merge 
structure
○ Not just one large branch that merges everything
○ Because of this, developer and maintainer workflow 

differs more than some other subsystems
○ Categories vs topics



Topic (feature) branches

● Inherent to developer workflow
● Keeps related changes together
● Usually builds up several short series of 

patches
● Independent series kept on separate 

branches
● Posting of patch series for review, etc
● Keeping series as one unit is useful for 

testing



Typical topic branch

Cleanup/refactor

Fix an existing bug

Add new feature

Convert existing code to use new feature

C

B

F

E



arm-soc categories

● Used instead of topics
● Top-level branch organization
● Usually consists of:

next/fixes-non-critical
next/cleanup
next/multiplatform
next/soc
next/drivers
next/boards
next/dt
...



Mapping topics into categories

● Done by the platform maintainers
● Useful for developers to know

○ Organizing your patch series appropriately
● Maintainer splits a series into the categories 

when applying
○ Cleanup patches go into cleanups, fixes to fixes, 

SoC common changes to soc branch, etc etc
● Base branches on top of each other

○ Allows for dependent patches to go in separate 
categories

○ Avoid circular dependencies!



Mapping topics into categories



A few words about bisectability

● Be careful to keep bisectability across 
branches

● Linear history vs branches





C

C

C
F

F

F

F

M

M

C

C

C

C
F

M

F

F

M

F

C

for-next

next/<feature>

next/cleanup

C: cleanup
F: feature
M: merge commit



More complicated cases

● In reality, some patches go through other 
trees

● How to handle dependencies?
○ Device tree conversions
○ Adding platform data contents
○ New drivers that need platform plumbing



General rules of dependencies

● Adding an external dependency is a three-
way handshake
○ You (platform maintainer)
○ Other subsystem maintainer
○ arm-soc maintainers

● Always do it over email, not IRC
● Patches need to be on a 100% stable 

branch
○ Never, ever rebased

● Pulled into both trees (driver + arm-soc)
● Might merge up through arm-soc if we 

merge first



External dependencies: New driver

● Easy case
● Driver patch goes through driver maintainer

○ Or, have him give you an Acked-by with agreement 
to merge through arm-soc

○ Preference varies between maintainers
○ Depends on what other work they have going on 

with their own tree
● Add DT entries in branch through arm-soc
● Bisectability should be preserved

○ Even if driver and DT is merged separately, 
bisectability is kept -- driver just won't probe



External dependencies: DT conversion

● Doesn't have to be complicated
● Driver patch to maintainer to fill 

platform_data from device tree
● DT update through arm-soc
● Keep platform_device/data for one release

○ Avoids extra dependencies
● Next release, remove platform_device 

registration
○ Everybody loves code removal!



External dependencies: platform data

● This can be messy
● Same as new driver: If maintainer acks, 

merge through arm-soc
● If you can easily make the driver work with 

both new and old data, do it
○ Avoids dependency, remove fallback in next release

● If not, stage a patch that adds structure 
members in a separate branch
○ Base driver patch on this for the driver tree
○ Merged into arm-soc

● Use your judgement on which approach to 
take



Dos and Dont's

● Want us to apply a patch directly? Tell us, don't assume 
we will
○ We get a lot of patches our way, most for review

● Send pull requests early
● Ask downstream users to use our tree

○ Avoids locking in your downstream users before code is accepted
○ Repeated pull requests of the same branches are fine

● Send your pull requests using signed tags
○ Provides a place to document the contents and makes it easy for us to 

include in the merge.
● Test arm-soc for-next branch and linux-next!

○ Short-circuits the loop on breakage
○ Keep your platform bisectable



Summary

● arm-soc and ARM platform development is 
still going strong

● Need to be diligent about merge paths to 
avoid conflicts
○ Make sure your developers know where to submit 

code!
● Getting used to our merge flow might take a 

couple of releases
○ Study existing maintainers workflow
○ Avoid downstream direct users until you're more 

familiar



Still awake?

Questions?



What will be new in 3.9

IRQ controller and timer cleanups
OMAP2+ multiplatform
WM8x50 support
Tegra T114 support
Samsung header moves towards multiplatform
shmobile switches to pinctrl
zynq support for real hardware (SMP)


