
1/21

Dominig ar Foll
Senior Software Architect

 Intel Open Source

 IoT Summit 2016, Berlin, DE dominig.arfoll@fridu.net

Attacking IoT, a viable business
➢ Ransom model
➢ Stall manufacturing
➢ Immobilise expensive items (e.g. your car)
➢ …

➢ Competitive advantage
➢ Collecting R&D, manufacturing data
➢ Disturbing production line

➢ Indirect
➢ Cheap robot for DDoS
➢ Easy entry point

3/21

Understanding the risks

Developer
Fix all possible weaknesses
Deactivate possible users errors
LTS assumed for free

Back Hat
Only need one security hole
Can be help by careless users
Good long term business opportunities
Good international network

4/21

Security fundamentals
Minimise surface of attack
Control the code which is run
Provide a bullet proof update model
Track security patches
Use HW security helpers when available
Limit lateral movement in the system
Develop and QA with security turned on
Do not rely on human but on platform and tools

 Security cannot be added after the fact

Do not rely on human
➢ Security experts are out of reach
➢ 9M Mobile Developers
➢ 8M Web Developers
➢ 0.5M Embedded Developers
➢ How many Embedded Security
Developers ?

➢ Human are unreliable
➢ We do not have the time now
➢ Oups, it’s too late to change it
➢ No one is interested by our system
➢ We are too small
➢ ...

6/21

Concepts are Known
but what about implementation?

EPID
ID Management

EPID
ID Management

TPM
Private/Secure Store

TPM
Private/Secure Store

UEFI
Secured Boot

UEFI
Secured Boot

Linux Kernel with up-to-date patchesLinux Kernel with up-to-date patches

SoC Specific drivers

Harden OS servicesHarden OS services

Mandatory Access Control
Integrity
Name Space
Firewall
Safe update
Encryption
ID/Key protection

 API API

Untrusted Apps / MiddlewareUntrusted Apps / Middleware Full isolation

Signing
Repo create
Debug
Customize
SoC Drivers

Signing
Repo create
Debug
Customize
SoC Drivers

Default policies
Debug
Sample code
HowTo

Default policies
Debug
Sample code
HowTo

AppFW
App Debug
App Packaging

AppFW
App Debug
App Packaging

Tools-DocTools-Doc Software running onTargetSoftware running onTarget

7/21

Know who/what you trust
➢ Trusted Boot : a MUST Have Feature

➢ Leverage hardware capabilities
➢ Small series & developer key handling

➢ Application Installation
➢ Verify integrity
➢ Verify origin
➢ Request User Consent [privacy & permissions]

➢ Update
➢ Only signed updates with a trusted origin
➢ Secured updates on compromised devices are a no-go option
➢ Factory reset built-in from a trusted zone
➢ Do not let back doors opened via containers
➢ Strict control of custom drivers [in kernel mode everything is possible]

8/21

Layered Architecture
➢ Client/UI (untrusted)

➢ Risk of code injection (HTML5/QML)
➢ UI on external devices (Mobiles, Tablets)
➢ Access to secure service APIs [REST/WS]

➢ Applications & Services (semi-trusted)
➢ Unknown developers & Multi-source
➢ High-grain protection by Linux DAC & MAC labels.
➢ Run under control of Application Framework: need to provide a
security manifest

➢ Platform & System services (trusted)
➢ Message Services started by systemd
➢ Service and API fine grain privilege protection
➢ Part of baseline distribution and certified services only

9/21

Bullet proof update and ID
Update is the only possible correction
l Must run safely on compromised devices
l Cannot assume a know starting point

Compromised ID / keys has no return
l Per device unique ID
l Per device symmetric keys
l Use HW ID protection (e.g. EPID)

Non reproducibility
l Breaking in one device cannot be extended
l Development I/O are disabled
l Root password is unique (or better a key)
l Password cannot be easily recalculated

10/21

A practical example (AGL)

Applicable to any Industrial IoT Linux

11/21

Service isolation
Run services with UID<>0 SystemD is your friend
l Create dedicated UID per service
l Use Linux MAC and Smack DAC to minimise open Access
Drop privileges
l Posix privileges
l MAC privileges
C-goups
l Reduce offending power
l RAM/CPU/IO
Name Space
l Limit access to private data
l Limit access to connectivity

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Mandatory_access_control

12/21

Segregate Apps from OS
➢ Application Manager

➢ One system daemon for application live cycle installs, update, delete
➢ One user daemon per user for application start, stop, pause, resume
➢ Create initial share secret between UI and Binder
➢ Spawn and controls application processes: binder, UI, …

➢ Security Manager

➢ Responsible of privilege enforcement
➢ Based on Cynara + WebSocket and D-Bus for Legacy)

➢ Application & Services Binders
➢ Expose platform APIs to UI, Services, Applications
➢ Loads services/application plugins :Audio, Canbus, Media Server…
➢ One private binder per application/services [REST, WebSocket, Dbus]
➢ Authenticate UI by oAuth token type
➢ Secured by SMACK label + UID/GIDs
➢ AppBinders runs under user $HOME

13/21

AGL2 Application Security

Agent-2
Car Environement

Agent-3
Engine

Agent-4
Remote Signal

CAN Bus-A

LIN Bus-A

Audio

CAN Bus-B

Cluster-Unit

...

Smart City

RVI

Cloud

Transport + Acess Control

Navigation
Service

Carte handling

POI management

etc...

Log/Supervision
Service

Carte handling

POI management

etc...

MultiMedia
Service

Media Player

Radio Interface

etc...

Distributed Application Architecture

MAC
Enforcement

Smack

Cgroups
NameSpace
Containers

Application Framwork Live Cycle Management
St

ar
t,S

to
p,

Pa
us

e,
In

st
al

l,R
em

ov
e,

...

14/21

AGL2 AppFW logic

15/21

To write an App
➢ Write back-end binding

➢ Adds the specialised API to the system
➢ Accessible by Web Socket or slow legacy D-Bus
➢ Run in its own security domain
➢ Can be cascaded

➢ Write the Front end
➢ Typically in HTML5, QML but open to any
➢ Connect to back-end binding using REST with secured key (OAuth2)
➢

➢ Package
➢ Based on W3C widget
➢ Feature allow to handle AGL specificities
➢ Install via the AppFW

16/21

AGL2+ Distributed Architecture

Cluster

Carte handling

Localistion management

POI

CAN GPS

Geopositioning
Virtual
Signal

Multi ECU & Cloud Aware Architecture

Entertainement

CAN-BUS
Virtual Signal

Gyro, AcelerometerCAN-BUS

LIN-BUS

Engine-CAN-BUS

ABS

Transport & ACL

Head Unix

Direction Indication

Cloud

Log
Analytics

No-SQL Engine

Statistics & Analytics

Transport & ACL

My Car Portal

Paiement

Subcriptions

Preference

Preferences
&

Custumisation

MongoDB Engine

Paiement Service

Cluster
Virtual Signal

Transport & ACL

Navigation
Service

Maintenance Portal

Know Bugs

Maintenances

Service Packs

17/21

AGL2++ Virtualised Architecture

Hardware

Trusted
Zone

Hypervisor

M
or

e
Pr

iv
ile

ge
s

Le
ss

 P
riv

ile
ge

s

AGL Linux Kernel
Guest Operating

Linux-RT/Microkernel
Guest Operating

AGL Core
Plateform Services

AGL Extra
Middleware

AG
L

Ap
p-

1

AG
L

Ap
p-

2

AG
L

Ap
p-

3

DomU Entertainment

A
p

p
-1

A
p

p
-2

AGL Mini
Plateform Services

DomU Cluster

Trusted Apps

AGL Linux
Supervisor

P
K

I s
a

fe
 S

to
re

In
te

g
re

ty
 c

o
n

tr
o

l

R
e

ss
o

u
rc

e
s

A
llo

c/
P

o
rx

y

E
m

e
rg

e
n

cy

S
e

rv
ic

e
s

Trusted
Boot

DOM0 controller

Virt
GPU

Virt
Audio

Virt
GPU

Virt
Audio

D
ia

g
n

is
ti

cs

Virtualized Secure Architecture

Container

18/21

Conclusion
➢ Technologies are available

➢ Secure boot, Secure zone
➢ Update over the air
➢ Isolation and containment
➢ Tools and training

➢ Management is not ready
➢ Still perceived as a nice to have
➢ Too risky to commit

➢ Engineering sees security as a brake to innovation
➢ Requires a serious personal investment and paradigm shift
➢ Complexity imposes to select a “Ready Made” solution

➢ AGL, Tizen, Snappy, ...
➢ “Will add it later” attitude is common but a guaranteed model to failure

Questions

IoT Summit 2016, Berlin, DE dominig.arfoll@fridu.net

20/21

Container "A mixed blessing"
Easy to use
l Detach the App from the platform
l Integrated App management
l Well known
Not very secure
l Unreliable introspection
l MAC has no power on the inside of a container
l Updating the platform does not update the
l middleware
l Beside the Kernel each App provide its own version
l of the OS
l Each App restart requires a full passing of credential
l RAM and Flash footprint are uncontrollable
l Far more secured with Clear Container but not applicable to low end SoC.
Only I/O via network
l Well equipped for Rest API
l All other I/O requires driver level access or bespoke framework.

https://www.opencontainers.org/
https://lwn.net/Articles/644675/

https://www.opencontainers.org/

21/21

Security Check list
Control which code you run
l Secure boot
l Integrity
l Secure update
Isolate services
l Drop root when possible
l Drop privileges
Isolate Apps
l Apps are not the OS
l Enforce – restrict access to standard API
Identity
l Enforce identity unicity
l Use available HW protection
Encryption
l Network traffic
l Local storage

Control image creation
l No debug tool in production
l No default root password
l No unrequired open port
Continuous integration
l Automate static analysis
l QA on secured image
Help developer
l Integrate security in Devel image
l Provide clear guide line
l Isolate Apps from OS
l Focus on standardised Middleware

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Ostro Security
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

