FDO:
Magic “Make My Program
Faster” compilation option!?

ARM Pawet Moll

Embedded Linux Conference Europe, Berlin, October 2016

©ARM 2016

2

Agenda

FDO Basics

Instrumentation based FDO
Sample based (“Auto’) FDO
Deployments

©ARM 2016

ARM

TLAS

FDO: Feedback Directed Optimisation
FDO: Feedback Driven Optimisation
PGO: Profile Guided Optimisation
PDF: Profile Directed Feedback

PFO: Profile Feedback Optimisation

©ARM 2016 ARM

Decisions to be made

Compiler has to make number of decisions
= Is “then” more probable than “else”?
* Is a function worth inlining here!?
= Should | unroll this loop?

Questions get down to branch probability assessment

= Usually estimated by a number of heuristics

The decision making process can be influenced by the programmer
= Fortran’s FREQUENCY hints for basic blocks Monte Carlo simulation

= GCC’s builtin expect() function,used by Likely () and unlikely () macros in
the Linux kernel

= “(...) brogrammers are notoriously bad at predicting how their programs actually perform.”

An obvious idea is to capture such data automatically

= Measuring frequency of branches (not)taken during real workload execution

©ARM 2016 ARM

THE FORTRAN

Programmer’s

Reference Manal

Cherpher 15, 1956

AUTOMATIC CODING SYSTEM

FOR THE

IBM 704 EDPM_

This manual supersedes all earlier information about the FoRTRAN

systemt. It describes the system which will be made available during

late 1956, and 15 mtended (o permic planning and Fortrax coding in

advandce of that time. An Introdeciory Programmer’s Manual and an

Operator's Manual will also be issued.

APPLILE SCMHCE DIVESION
AND PFHOGHANMMING FLSLARCH DEFT.

Trdermationsl Rusines Mackines Corporaiion
00 Modiion Ave., New York 32X N Y

P, W, RAELE L. B, MATCHELL
i I FLEELR E. A NILSN
& RERT R, MIITT
Eladird Aircrafi Corp.,

e Lan Nanifoed, Cose
I L NIRRT S

k. BILMGHES
F. K. SIIEEIDAN
Aty of Cakfoaia _
Kadialben Laboraimy, ML ATIRY
Livarmpey. i @il [TR

FREGUENCY

3. Execwtion of o DO will in general stove a new value of the index. (It will

not always da so, hawever; see the section on Furiber Dietsils abowt DO
Saalensnds in Chapler 7.

4. Exezistion of a READ, READ INPUT TA FE, REAL} TAPE, or READ
DXRUM stores now vabses of Ihe varishles lived,

LHHIR&L roas | [s P T T4
“FREQUENCY ml, j .. .1, mik, 0, .0 . = FREGUERCY 331, 2, 11,
whide n.m, ... aig 186lemeed mombers and | A0 10, 500, 7 0, 1

LLE L e wrgned 1iopd psist conviaats.

The FREQUENCY siatement permits the programmeer fo give his cslimate, for
cach branchpoind of conwol, of the frequencies with which ke several bramches
will actually be executed in the object program. This mfogemation is used 10
aplimise the we of index regiviers in the object program.

A FRECFUERCY sintement may be placed anywhere in the sounce pro-
graem. and may be used o give the frequency information absoug any number
of heanch-pomis, For each branch-paine the miormastion consists of the slate-
ment number of the stslement causimg the hranch, followed by parenihess en-
chosing the cstimated froquencies soparaled by comnis,

Conssder the example. This might be a FREDUESCY stntemend an 2
program in which statement M is an IF, 400 iz a [0, and 50 s 3 compused
i) T, The programmer cstimates that the argument of the 1F is as likely 1o
be zero as non-zepo, and when it is non-zere it is as Hkely 0 be megative as
positive, The DO stalement a1 b ks presumably one for whach at least one of
the indesing parameters {n'sh s B0l b conslan but a vanablke, w0 that the niam-
Beg ol tinses the leop must be oxcoaled pr make o normal exrl s nod kedvan an
silvance: the programemer here estimates that 11 s o good average for tha
numaber, The compaied G0 TOr an 3 is estimatod b0 ransfer Woals four branches
with freguenscies 1, 7. 1. 1.

Al fl'l!ql.l".'lh:]l eslimatis, exocpt thise abogr THDs, are refmdve, thus I:|1|.':|
can be muliiplied by any constant, The example statement, for imstanee, coukl
equally well be given as FREQUENCY HO(3.4,2, SO0 100, S00E21.50 A
frequency miay he extimiated as 0 this will b laken te mean b the laequency
is very small.

The Follaing table lists the B types o stmlensemt abival which freguency
informniion may be grven.

L

Example code

#define ARRAY SIZE(a) (sizeof(a) / sizeof((a)[0]))
#include "bubble.h" /* array of 30000 integers in random order */
int main(void) {
int done, 1i;
do {
done = 1;
for (i = 0; i < ARRAY SIZE(a) - 1; i++) {
if (a[i] > a[i + 1]) {
int t = a[il;
a[i] = a[i + 1];
a[i + 1] = t;

done = 0;
}
}
} while (!done);
return 0;

©ARM 2016 ARM

Instrumentation based FDO

= Classic approach, available both in gcc and LLVM

" Compile a program with additional, profiling code injected by the compiler

$ gcc bubble.c -g -03 -fprofile-generate \
-0 bubble-03-profile-generate

* Run the instrumented program, generating profile

$./bubble-03-profile-generate
$ ls *.gcda
bubble.gcda

Compile the program again, using the profile

$ gcc bubble.c -g -03 -fprofile-use -0 bubble-03-profile-use

©ARM 2016 ARM

8

gcc 4.8 -0O3

if:

©ARM 2016

mov
mov
cmp
adrp
add
mov
add
shfiz
sbfiz
b.hi
ldr
ldr
cmp
b.le
str
str
mov

wo,
w6,
wo,
X2,
wl,
w7,
X2,
x4,
X3,

#OX0

#29998

w6
_G_0_T+0x28
wo, #0Ox1
#OX1

X2, #OX30
X0, #2, #32
X1, #2, #32

while

wo,

wb,

wo,

lesseq

w5,
wo,
w7,

[x2, x4]
[x2, x3]
w5

[x2, x4]
[x2, x3]
#OX0

lesseq: mov
for: cmp
add
sbfiz
sbfiz
b.1ls
while: mov
cbnz
mov
mov
b
return: mov
ret

if (a[i] > a[i + 1]) {
int t = a[i];
al[i] = a[i + 1];
afi + 1] = t;
done = 0;

wo,
w0,

x4,
X3,
if

wl,

w7/,
wo,
for
wo,

wl

wb

w0, #0x1
X0, #2, #32
x1, #2, #32

w7/
return
#Ox1
wl

#0Ox0

ARM

gcc 4.8 -O3 -fprofile-generate

stp
adrp
mov
str
mrs
add
add
mov
add
ldr
ldr
bl
adrp
add
mov
str
ldr
ldr
mov
cmp

©ARM 2016

x29, x30, [sp,#-32]!

X2, gcov i ccC
x29, sp

x19, [sp,#16]
x19, tpidr el0O
x19, x19, #0x0,
x19, x19, #0x10
x1, #0x0

x2, x2, #0xd60
x0, [x19]

x3, [x19,#8]
_gcov icp
x11, a+0x1cfoOo
x0, x11, #0x670
w7, #29998

xzr, [x19,#8]
x6, [x0,#8]
x10, [x0,#24]
w0, #O0x0

wO, w7/

lsl #12

adrp
add
ldr
mov
add
sbfiz
sbfiz
b.hi
ldr
ldr
add
cmp
b.le
str
str
add
mov
mov
cmp
add

X2,
wl,
X8,
w9,
X2,
x4,
X3,

G 0T +0x48
w0, #0x1
[x11,#1648]
#0Ox1

x2, #0x100
X0, #2, #32

x1, #2, #32

main+0xac

wo,
w5,
X6,
wo,

main+0x94

wh,
wo,
X8,
w9,
w0,
w0,
wl,

[x2,x4]

[x2,x3]
x6, #0x1 -
w5 |

[x2,x4]
[x2,x3]

x8, #0x1
#0x0 o J
wl

w7/

wO, #0x1

sbfiz
sbfiz
b.1ls
cbnz
mov
add
mov
mov

add
mov
ldr
ldr
str
add
str
str
str
ldp
ret

x4, x0, #2, #32
x3, x1, #2, #32
400dd0O

w9, 400e24

wl, w9 \\
x10, x10, #0x1 //
w9, #0x1 c
wO, wl ﬂ
400df8 <main+0x98>
x1, x11, #0x670

w0, #0x0

x19, [sp,#16]

x2, [x1,#16]

x6, [x1,#8]

x2, x2, #0x1

x10, [x1,#24]

x2, [x1,#16]

x8, [x11,#1648]

x29, x30, [sp],#32

ARM

10

gcc 4.8 -O3 -fprofile-use

if:

for:

©ARM 2016

mov
mov
cmp
adrp
add
mov
add
sbfiz
sbfiz
b.hi
ldr
ldr
cmp
b.gt
mov
cmp

w9, #0x0

wb, #29998

w9, w6

x2, G 0 T+0x28
wl, w9, #0x1
w7, #0x1

X8, X2, #0x30
x4, x9, #2, #32
x3, X1, #2, #32
while

w0, [x8,x4]

w5, [x8,x3]

wO, wb

then

w9, wl

w9, wb

while:

then:

return:

add
sbfiz
sbfiz
b.ls
cbnz
mov
mov
mov

str
str
mov
mov

mov
ret

wl,
x4,
X3,
1f

w7/,
wl,
w9,
w7/,
for
w5,
wo,
w7,
w9,
for
w0,

w9, #0x1
X9, #2, #32
X1, #2, #32

return
w/

wl
#0O0x1

[x8,x4]
[x8,x3]
#0x0
wl

#0Ox0

ARM

gcc-4.8 results

metric -0O3 -03
-fprofile-generate -fprofile-use

time elapsed 3.306690054 s 3.382299600 s 3.422646478 s
(+2.3% vs -O3) (+3.5% vs -O3)
cycles 6,612,612,325 6,763,814,485 6,844,522,764
(+2.3% vs -O3) (+3.5% vs -O3)
instructions 9,599,581,077 10,716,296,612 9,823,874,803
(+11.1% vs -O3) (+2.3% vs -O3)
IPC | .45 .58 | 44

Cortex-A57

I CONFIDENTIAL A R I I

12

gcc 6.1 -O3

do:

for:

lesseq:

©ARM 2016

adrp
add
mov
add
add
ldp
cmp
b.le
mov
stp
add
cmp
b.ne
cbz
mov
ret

x5, F E +0xfalo
X0, x5, #0x830

w4, #0x1

x3, X0, #0x1ld, Usl #12
X3, X3, #0x4bc

wl, w2, [x0]

wl, w2

lesseq

w4, #0x0

w2, wl, [x0]

X0, x0, #0x4

x0, x3

for

w4, do

w0, #0x0

ARM

gcc 6.1 -O3 -fprofile-generate

stp x29, x30, [sp,#-32]! adrp x10, F E+Oxfb60 mov wl2, #0xl1

adrp x1l, gcov 1 c c+Ox3ffff8 mov x9, #29999 7 b main+0x58 //

add x1, x1, #0xd60 add X0, x10, #0O0x7f0 add X0, x19, #0xd90
mov X0, #29419 mov x11, x7 str X8, [x0,#24]

mov x29, sp add x3, x0, #0x1ld, 1sl #12 cbnz w6, main+0xd8
movk x0, #0x670, lsl #16 mov w5, #0x1 cbnz wl2, main+0xe0

stp x19, x20, [sp,#16] add x3, X3, #0x4bc add x1, x19, #0xd90
adrp x19, a+0x1c810 ldp wl, w2, [x0] - mov wO, #0x0

bl _gcov i c p v2 cmp wl, w2 ldp x19, x20, [sp,#16]
add x20, x19, #0xd96 b.le main+0x88 ldr x2, [x1,#32]

adrp x1, F E+0xfb60 add x4, x4, #0x1 add x2, x2, #0x1

ldr x1, [x1,#1704] mov wb, #0x1 str x2, [x1,#32]

mrs x2, tpidr elO mov w5, #0x0 ldp x29, x30, [sp],#32
mov x0, x20 stp w2, wl, [x0] ret

str xzr, [x2,x1] add X0, x0, #0x4 str x4, [x0,#16]

bl __gcov tp cmp x0, x3 b main+0xb4

Ldp x4, x8, [x20,#16] b.ne main+0Ox6¢ add X0, x19, #0xd90
mov wl2, #0x0 add x8, x8, x9 /4}#29999 str x11, [x0,#40]

ldr x7, [x20,#40] add x7, X7, #0x1 N b main+0xb8

mov wb, #0x0 cbnz w5, main+0xa8 //
|

©ARM 2016 ARM

gcc 6.1 -O3 -fprofile-use

adrp x6, F E+Oxf8f8

add x0, x6, #0x950

ldr wl, [x6,#2384]

add x5, x0, #0x1d,\
1sl #12

mov wd, #0x1

add x5, x5, #0x4bc

ldr w2, [x0,#4]

cmp wl, w2

b.le main+0x30

str w2, [x6,#2384]

mov w4, #0x0

str wl, [x0,#4]

add X7, x0, #0x4

ldr w8, [x0,#4]

ldr w3, [x7,#4]

cmp w8, w3

b.le main+0x50

str w3, [x0,#4]

mov w4, #0x0

str w8, [x7,#4]

add x14, x7, #0x4

b main+0xcc

©ARM 2016

add
ldr
ldr
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt

x11, x14, #0x4
wl3, [x14,#4]

wl2, [x11,#4]

wl3, wl2
main+0x138

wl4, wls5, [x11,#4]
wl4, wls
main+0x12c

wl6e, wl7, [x11,#8]
wlé, wl7
main+0x120

wl8, w0O, [x11,#12]
wl8, wo
main+0x114

wl, w2, [x11,#16]
wl, w2

main+0x108

w7, w8, [x11,#20]
w7, w8

main+0xfc

w9, w3, [x11,#24]
w9, w3

main+0xfo

ldp
cmp
b.gt
add
cmp
b.eq
ldp
cmp
b.le
mov
stp

mov
stp

mov
stp

mov
stp

mov
stp

wl@, wl2, [x11,#28]
wlO, wl2
main+0xe4

x14, x11, #0x20
x14, x5
main+0x148

w9, wl0O, [x14]
w9, wl0
main+0x58

w4, #0x0

wl0, w9, [x14]
main+0x58

w4, #0x0

wl2, wl0, [x11,#28]
main+0xcO

w4, #0x0

w3, w9, [x11,#24]
main+0xb4

w4, #0x0

w8, w7, [x11,#20]
main+0xa8

w4, #0x0

w2, wl, [x11,#16]

b
mov
stp

mov
stp

mov
stp

str
mov
str

cbz
mov
ret

main+0x9c

w4, #0x0

w0, wl8, [x11,#12]
main+0x90

w4, #0x0

wl7, wl6, [x11,#8]
main+0x84

w4, #0x0

wl5, wl4, [x11,#4]
main+0x78

wl2, [x14,#4]

w4, #0x0

wl3, [x11,#4]
main+0x6¢

w4, main+0x4

wO, #0x0

ARM

gcc-6.1 results

metric -0O3 -03
-fprofile-generate -fprofile-use

time elapsed 3.268757833 s 3.372646410 s 2.504173270 s
(-1.1% vs 4.8) (+3.1% vs -O3) (-23.4% vs -0O3)
cycles 6,536,735,848 6,744,497,117 5,007,557,329
(-1.1% vs 4.8) (+3.1% vs -O3) (-23.4% vs -O3)
instructions 5,806,220,662 6,254,942,732 3,873,453,819
(-39.5% vs 4.8) (+7.7% vs -O3) (-33.3% vs -O3)
IPC 0.89 0.93 0.77

Cortex-A57

I5 CONFIDENTIAL A R I I

Challenges with instrumentation based FDO

" Training data generation
= SPEC2006 benchmark suite ships with carefully researched dataset

= “Evaluating whether the training data provided for profile feedback is a realistic control flow
for the real workload” paper

= Substantial profile generation overhead
= 16% on average for SPECint2006 quoted

= But observed up to 100 times slowdown on particular workloads

" Requires two-stage build, interleaved with a training run

16 ©ARM20I6 ARM

Sample based AutoFDO

Introduced in “Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from
Hardware Event Sampling” paper from 2008, available upstream in gcc since 5.1 and LLVM since 3.5

Compile a program as normal

$ gcc bubble.c -g -03 -0 bubble-03

Run the program as normal, capturing profile using standard Linux perf tool

$ perf record -b bubble-03

Convert perf.data into a profile using the autofdo tool (available on github)

$ create gcov --binary=bubble-03 --profile=perf.data \
- -gcov=bubble-03.gcov --gcov-version=1

Compile the program again (perhaps for the next release), using the profile

$ gcc bubble.c -g -03 -fauto-profile=bubble-03.gcov \
-0 bubble-03-profile-use

©ARM 2016

ARM

AutoFDO advantages

" Lower runtime overhead

" Profile generation can be performed off-line

" No need to generate special training data
" Profiles can be generated based on real (even end user) program execution

= And can be aggregated from a number of runs

" Source-oriented profile

= Applicable even after (reasonable) source code changes

Easier to integrate with build systems

" New release can use profiles generated with older release

18 ©ARM20I6 ARM

gcc 6.1 -O3 -fauto-profile

adrp x6, F E+0xf920

add x0, x6, #0x920
ldr wl, [x6,#2336]
add x5, x0, #0x1d, 1sl #12
mov w2, #0x1

add x5, x5, #0x4bc
ldr w3, [x0,#4]
cmp wl, w3

b.le main+0x30

str w3, [x6,#2336]
mov w2, #0x0

str wl, [x0,#4]
add X7, x0, #0x4
ldr w8, [x0,#4]
ldr w4, [x7,#4]
cmp w8, w4

b.le main+0x50

str w4, [x0,#4]
mov w2, #0x0

str w8, [x7,#4]
add x14, x7, #0x4
1dp w9, wl0, [x14]
cmp w9, wl0

b.le main+0x68

mov w2, #0x0

©ARM 2016

stp
add
ldr
ldr
cmp
b.le
str
mov
str
ldp
cmp
b.le
mov
stp
ldp
cmp
b.le
mov
stp
ldp
cmp
b.le
mov
stp
ldp

wlO, w9, [x14]
x11, x14, #0x4
wl3, [x14,#4]

wl2, [x11,#4]

wl3, wl2
main+0x88

wl2, [x14,#4]

w2, #0x0

wl3, [x11,#4]

wl4, wl5, [x11,#4]
wld4, wl5
main+0x9c

w2, #0x0

wl5, wl4d, [x11,#4]
wle, wl7, [x11,#8]
wle, wl7
main+0xb0

w2, #0x0

wl7, wl6, [x11,#8]
wl8, w0, [x11,#12]
wl8, w0

main+0xc4

w2, #0x0

w0, wl8, [x11,#12]
wl, w3, [x11,#16]

cmp
b.le
mov
stp
1dp
cmp
b.le
mov
stp
ldp
cmp
b.le
mov
stp
1dp
cmp
b.le
mov
stp
add
cmp
b.ne
cbz
mov
ret

wl, w3

main+0xd8

w2, #0x0

w3, wl, [x11,#16]
w7, w8, [x11,#20]
w7, w8

main+0xec

w2, #0x0

w8, w7, [x11,#20]
w9, w4, [x11,#24]
w9, wd
main+0x100

w2, #0x0

w4, w9, [x11,#24]
wlO, wl2, [x11,#28]
wl0, wl2
main+0x114

w2, #0x0

wl2, wl0, [x11,#28]
x14, x11, #0x20
x14, x5
main+0x54

w2, main+0x4

w0, #0x0

ARM

gcc-6.1 results

metric -0O3 -03
-fprofile-use -fauto-profile

time elapsed 3.268757833 s 2.504173270 s 2.806803990 s
(-1.1% vs 4.8) (-23.4% vs -O3) (-14.1% vs -O3)
cycles 6,536,735,848 5,007,557,329 5,612,823,771
(-1.1% vs 4.8) (-23.4% vs -O3) (-14.1% vs -O3)
instructions 5,806,220,662 3,873,453,819 3,649,604,577
(-39.5% vs 4.8) (-33.3% vs -O3) (-37.1% vs -O3)
IPC 0.89 0.77 0.65

Cortex-A57

20 CONFIDENTIAL A RI I

21

Sampled profile quality

Sampled profiles are inaccurate by nature

To analyze branch frequency, samples should be focused on branches
" Precise sampling on “branch executed” events
= Branch history stack (perf record -b)

* Processor trace

All this require hardware support

Branch history drastically improves statistical profile quality with little overhead

= ““Taming hardware event samples for precise and versatile feedback directed optimization”
paper
Processor trace provides accurate branch information but increases overhead

= May be reasonable for performance critical portions

©ARM 2016 ARM

SPEC2006 results

" Google’s AutoFDO gcc branch provided real improvements up to 15%, as described in
“Hardware Counted Profile-Guided Optimization” paper

15.00%

M Local trial
M Google paper

astar povray libquantum h264ref Ibm xalancbmk milc

gcc-google-4.8, x86_ 64, SPEC2006 result improvement with “—O2 —fauto-profile=autofdo.gcov” over “-0O2”

22 CONFIDENTIAL A Rl I

23

Challenges with sample based FDO

= Not 100% mature tools

" Profile compatibility issues

* Requires detailed debug information for binaries

" Sometimes hard to achieve in production releases

= Observed instability of results
" Profile generated for AutoFDO optimized binary can cause performance regression in the next build
= Usually result of lost information about execution hotspots, eg:
if (cond) x = a; else x = b;
converted into

csel x, a, b, cond

©ARM 2016

ARM

FDO in LLVM

* |nstrumentation based FDO

$ clang -03 -fprofile-instr-generate bubble.c \
-0 bubble-03-profile-instr-generate

$ clang -03 -fprofile-instr-use=bubble.profdata bubble.c \
-0 bubble-03-profile-instr-use
* AutoFDO support currently catching up with gcc results
$ clang -03 -g bubble.c -0 bubble-03
$ perf record -b bubble-03
$ create_llvm_prof --binary=bubble-03 --profile=perf.data \
--out=bubble-03.prof -format=text

$ clang -03 -gline-tables-only \
-fprofile-sample-use=bubble-03.prof \
bubble.c -0 bubble-03-profile-sample-use

24 ©ARM20I16 ARM

Example LLVM AutoFDO profile

©: void Proc 3 (Rec Pointer *Ptr Ref Par) Proc 3:728:14

1: /******************/ o

2: /* executed once */ 7 14

3: /* Ptr Ref Par becomes Ptr Glob */ 8: 14 Proc 7:10
4: {

6: /* then, executed */

7: *Ptr Ref Par = Ptr Glob->Ptr Comp;

8: Proc 7 (10, Int Glob, &Ptr Glob->variant.var 1.Int Comp);

9: } /* Proc 3 */

25 ©ARM20I6 ARM

Deployments

= Commercial products

= Often only for performance critical portions

= Open source projects like CPython and Firefox

= Support for FDO available in build system but not turned on by default

Google data center

= Oirigins of AutoFDO
Chrome & ChromeOS

" Cross profiling

ClearLinux

©ARM 2016 ARM

AutoFDO at Google data center

= At data center scale, even fractional improvement translates into significant
financial savings

= “AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale
Applications” paper discusses Google’s infrastructure:

Source
Depot

Release
Binary
Archive

Binary
Index &
Symbols

perf_events
Daemon

Figure 1. System Diagram.

27 ©ARM20I6 ARM

Future

" Intensive development in LLVM

* Fueled by Google work on replacing gcc in their work flows

* More hardware providing relevant data
* Intel PT already available in mainline kernel
" ARM’s CoreSight trace mostly merged

= New PMU features in both architectures

" Wider deployment in managed environments
* Very natural technique for JITs, can avoid most static environment challenges

= Many use FDO already

28 ©ARM20I16 ARM

Summary

* There is no magic “Make My Program Faster” compilation option

= Although, carefully used, FDO can bring significant improvements

* |nstrumentation based FDO known since mainframes era

= And yet surprisingly rarely used in practice

Sample based AutoFDO lowers entry barrier

= But still requires careful maintenance

Do give it a try!

= Just make sure to measure effects

29 ©ARM20I6 ARM

