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TLAS

FDO: Feedback Directed Optimisation
FDO: Feedback Driven Optimisation
PGO: Profile Guided Optimisation
PDF: Profile Directed Feedback

PFO: Profile Feedback Optimisation

©ARM 2016 ARM



Decisions to be made

Compiler has to make number of decisions
= Is “then” more probable than “else”?
* Is a function worth inlining here!?
= Should | unroll this loop?

Questions get down to branch probability assessment

= Usually estimated by a number of heuristics

The decision making process can be influenced by the programmer
= Fortran’s FREQUENCY hints for basic blocks Monte Carlo simulation

= GCC’s  builtin expect() function,used by Likely () and unlikely () macros in
the Linux kernel

= “(...) brogrammers are notoriously bad at predicting how their programs actually perform.”

An obvious idea is to capture such data automatically

= Measuring frequency of branches (not)taken during real workload execution

©ARM 2016 ARM
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Example code

#define ARRAY SIZE( a) (sizeof( a) / sizeof(( a)[0]))
#include "bubble.h" /* array of 30000 integers in random order */
int main(void) {
int done, 1i;
do {
done = 1;
for (i = 0; i < ARRAY SIZE(a) - 1; i++) {
if (a[i] > a[i + 1]) {
int t = a[il;
a[i] = a[i + 1];
a[i + 1] = t;

done = 0;
}
}
} while (!done);
return 0;
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Instrumentation based FDO

= Classic approach, available both in gcc and LLVM

" Compile a program with additional, profiling code injected by the compiler

$ gcc bubble.c -g -03 -fprofile-generate \
-0 bubble-03-profile-generate

* Run the instrumented program, generating profile

$ ./bubble-03-profile-generate
$ ls *.gcda
bubble.gcda

Compile the program again, using the profile

$ gcc bubble.c -g -03 -fprofile-use -0 bubble-03-profile-use
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gcc 4.8 -0O3

if:
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mov
mov
cmp
adrp
add
mov
add
shfiz
sbfiz
b.hi
ldr
ldr
cmp
b.le
str
str
mov

wo,
w6,
wo,
X2,
wl,
w7,
X2,
x4,
X3,

#OX0

#29998

w6
_G_0_T+0x28
wo, #0Ox1
#OX1

X2, #OX30
X0, #2, #32
X1, #2, #32

while

wo,

wb,

wo,

lesseq

w5,
wo,
w7,

[x2, x4]
[x2, x3]
w5

[x2, x4]
[x2, x3]
#OX0

lesseq: mov
for: cmp
add
sbfiz
sbfiz
b.1ls
while: mov
cbnz
mov
mov
b
return: mov
ret

if (a[i] > a[i + 1]) {
int t = a[i];
al[i] = a[i + 1];
afi + 1] = t;
done = 0;

wo,
w0,

x4,
X3,
if

wl,

w7/,
wo,
for
wo,

wl

wb

w0, #0x1
X0, #2, #32
x1, #2, #32

w7/
return
#Ox1
wl

#0Ox0
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gcc 4.8 -O3 -fprofile-generate

stp
adrp
mov
str
mrs
add
add
mov
add
ldr
ldr
bl
adrp
add
mov
str
ldr
ldr
mov
cmp
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x29, x30, [sp,#-32]!

X2, gcov i ccC
x29, sp

x19, [sp,#16]
x19, tpidr el0O
x19, x19, #0x0,
x19, x19, #0x10
x1, #0x0

x2, x2, #0xd60
x0, [x19]

x3, [x19,#8]
_gcov icp
x11, a+0x1cfoOo
x0, x11, #0x670
w7, #29998

xzr, [x19,#8]
x6, [x0,#8]
x10, [x0,#24]
w0, #O0x0

wO, w7/

lsl #12

adrp
add
ldr
mov
add
sbfiz
sbfiz
b.hi
ldr
ldr
add
cmp
b.le
str
str
add
mov
mov
cmp
add

X2,
wl,
X8,
w9,
X2,
x4,
X3,

G 0T +0x48
w0, #0x1
[x11,#1648]
#0Ox1

x2, #0x100
X0, #2, #32

x1, #2, #32

main+0xac

wo,
w5,
X6,
wo,

main+0x94

wh,
wo,
X8,
w9,
w0,
w0,
wl,

[x2,x4]

[x2,x3]
x6, #0x1 -
w5 |

[x2,x4]
[x2,x3]

x8, #0x1
#0x0 o J
wl

w7/

wO, #0x1

sbfiz
sbfiz
b.1ls
cbnz
mov
add
mov
mov

add
mov
ldr
ldr
str
add
str
str
str
ldp
ret

x4, x0, #2, #32
x3, x1, #2, #32
400dd0O

w9, 400e24

wl, w9 \\
x10, x10, #0x1 //
w9, #0x1 c
wO, wl ﬂ
400df8 <main+0x98>
x1, x11, #0x670

w0, #0x0

x19, [sp,#16]

x2, [x1,#16]

x6, [x1,#8]

x2, x2, #0x1

x10, [x1,#24]

x2, [x1,#16]

x8, [x11,#1648]

x29, x30, [sp],#32
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gcc 4.8 -O3 -fprofile-use

if:

for:
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mov
mov
cmp
adrp
add
mov
add
sbfiz
sbfiz
b.hi
ldr
ldr
cmp
b.gt
mov
cmp

w9, #0x0

wb, #29998

w9, w6

x2, G 0 T+0x28
wl, w9, #0x1
w7, #0x1

X8, X2, #0x30
x4, x9, #2, #32
x3, X1, #2, #32
while

w0, [x8,x4]

w5, [x8,x3]

wO, wb

then

w9, wl

w9, wb

while:

then:

return:

add
sbfiz
sbfiz
b.ls
cbnz
mov
mov
mov

str
str
mov
mov

mov
ret

wl,
x4,
X3,
1f

w7/,
wl,
w9,
w7/,
for
w5,
wo,
w7,
w9,
for
w0,

w9, #0x1
X9, #2, #32
X1, #2, #32

return
w/

wl
#0O0x1

[x8,x4]
[x8,x3]
#0x0
wl

#0Ox0
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gcc-4.8 results

metric -0O3 -03
-fprofile-generate -fprofile-use

time elapsed 3.306690054 s 3.382299600 s 3.422646478 s
(+2.3% vs -O3)  (+3.5% vs -O3)
cycles 6,612,612,325 6,763,814,485 6,844,522,764
(+2.3% vs -O3)  (+3.5% vs -O3)
instructions 9,599,581,077 10,716,296,612 9,823,874,803
(+11.1% vs -O3) (+2.3% vs -O3)
IPC | .45 .58 | 44

Cortex-A57
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gcc 6.1 -O3

do:

for:

lesseq:
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adrp
add
mov
add
add
ldp
cmp
b.le
mov
stp
add
cmp
b.ne
cbz
mov
ret

x5, F E +0xfalo
X0, x5, #0x830

w4, #0x1

x3, X0, #0x1ld, Usl #12
X3, X3, #0x4bc

wl, w2, [x0]

wl, w2

lesseq

w4, #0x0

w2, wl, [x0]

X0, x0, #0x4

x0, x3

for

w4, do

w0, #0x0
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gcc 6.1 -O3 -fprofile-generate

stp x29, x30, [sp,#-32]! adrp x10, F E+Oxfb60 mov wl2, #0xl1

adrp x1l, gcov 1 c c+Ox3ffff8 mov x9, #29999 7 b main+0x58 //

add x1, x1, #0xd60 add X0, x10, #0O0x7f0 add X0, x19, #0xd90
mov X0, #29419 mov x11, x7 str X8, [x0,#24]

mov x29, sp add x3, x0, #0x1ld, 1sl #12 cbnz w6, main+0xd8
movk x0, #0x670, lsl #16 mov w5, #0x1 cbnz wl2, main+0xe0

stp x19, x20, [sp,#16] add x3, X3, #0x4bc add x1, x19, #0xd90
adrp x19, a+0x1c810 ldp wl, w2, [x0] - mov wO, #0x0

bl _gcov i c p v2 cmp wl, w2 ldp x19, x20, [sp,#16]
add x20, x19, #0xd96 b.le main+0x88 ldr x2, [x1,#32]

adrp x1, F E+0xfb60 add x4, x4, #0x1 add x2, x2, #0x1

ldr x1, [x1,#1704] mov wb, #0x1 str x2, [x1,#32]

mrs x2, tpidr elO mov w5, #0x0 ldp x29, x30, [sp],#32
mov x0, x20 stp w2, wl, [x0] ret

str xzr, [x2,x1] add X0, x0, #0x4 str x4, [x0,#16]

bl __gcov tp cmp x0, x3 b main+0xb4

Ldp x4, x8, [x20,#16] b.ne main+0Ox6¢ add X0, x19, #0xd90
mov wl2, #0x0 add x8, x8, x9 /4}#29999 str x11, [x0,#40]

ldr x7, [x20,#40] add x7, X7, #0x1 N b main+0xb8

mov wb, #0x0 cbnz w5, main+0xa8 //
|
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gcc 6.1 -O3 -fprofile-use

adrp x6, F E+Oxf8f8

add x0, x6, #0x950

ldr wl, [x6,#2384]

add x5, x0, #0x1d,\
1sl #12

mov wd, #0x1

add x5, x5, #0x4bc

ldr w2, [x0,#4]

cmp wl, w2

b.le main+0x30

str w2, [x6,#2384]

mov w4, #0x0

str wl, [x0,#4]

add X7, x0, #0x4

ldr w8, [x0,#4]

ldr w3, [x7,#4]

cmp w8, w3

b.le main+0x50

str w3, [x0,#4]

mov w4, #0x0

str w8, [x7,#4]

add x14, x7, #0x4

b main+0xcc
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add
ldr
ldr
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt
ldp
cmp
b.gt

x11, x14, #0x4
wl3, [x14,#4]

wl2, [x11,#4]

wl3, wl2
main+0x138

wl4, wls5, [x11,#4]
wl4, wls
main+0x12c

wl6e, wl7, [x11,#8]
wlé, wl7
main+0x120

wl8, w0O, [x11,#12]
wl8, wo
main+0x114

wl, w2, [x11,#16]
wl, w2

main+0x108

w7, w8, [x11,#20]
w7, w8

main+0xfc

w9, w3, [x11,#24]
w9, w3

main+0xfo

ldp
cmp
b.gt
add
cmp
b.eq
ldp
cmp
b.le
mov
stp

mov
stp

mov
stp

mov
stp

mov
stp

wl@, wl2, [x11,#28]
wlO, wl2
main+0xe4

x14, x11, #0x20
x14, x5
main+0x148

w9, wl0O, [x14]
w9, wl0
main+0x58

w4, #0x0

wl0, w9, [x14]
main+0x58

w4, #0x0

wl2, wl0, [x11,#28]
main+0xcO

w4, #0x0

w3, w9, [x11,#24]
main+0xb4

w4, #0x0

w8, w7, [x11,#20]
main+0xa8

w4, #0x0

w2, wl, [x11,#16]

b
mov
stp

mov
stp

mov
stp

str
mov
str

cbz
mov
ret

main+0x9c

w4, #0x0

w0, wl8, [x11,#12]
main+0x90

w4, #0x0

wl7, wl6, [x11,#8]
main+0x84

w4, #0x0

wl5, wl4, [x11,#4]
main+0x78

wl2, [x14,#4]

w4, #0x0

wl3, [x11,#4]
main+0x6¢

w4, main+0x4

wO, #0x0
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gcc-6.1 results

metric -0O3 -03
-fprofile-generate -fprofile-use

time elapsed 3.268757833 s 3.372646410 s 2.504173270 s
(-1.1% vs 4.8) (+3.1% vs -O3) (-23.4% vs -0O3)
cycles 6,536,735,848 6,744,497,117 5,007,557,329
(-1.1% vs 4.8) (+3.1% vs -O3) (-23.4% vs -O3)
instructions 5,806,220,662 6,254,942,732 3,873,453,819
(-39.5% vs 4.8) (+7.7% vs -O3) (-33.3% vs -O3)
IPC 0.89 0.93 0.77

Cortex-A57
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Challenges with instrumentation based FDO

" Training data generation
= SPEC2006 benchmark suite ships with carefully researched dataset

= “Evaluating whether the training data provided for profile feedback is a realistic control flow
for the real workload” paper

= Substantial profile generation overhead
= 16% on average for SPECint2006 quoted

= But observed up to 100 times slowdown on particular workloads

" Requires two-stage build, interleaved with a training run

16 ©ARM20I6 ARM



Sample based AutoFDO

Introduced in “Feedback-Directed Optimizations in GCC with Estimated Edge Profiles from
Hardware Event Sampling” paper from 2008, available upstream in gcc since 5.1 and LLVM since 3.5

Compile a program as normal

$ gcc bubble.c -g -03 -0 bubble-03

Run the program as normal, capturing profile using standard Linux perf tool

$ perf record -b bubble-03

Convert perf.data into a profile using the autofdo tool (available on github)

$ create gcov --binary=bubble-03 --profile=perf.data \
- -gcov=bubble-03.gcov --gcov-version=1

Compile the program again (perhaps for the next release), using the profile

$ gcc bubble.c -g -03 -fauto-profile=bubble-03.gcov \
-0 bubble-03-profile-use

©ARM 2016
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AutoFDO advantages

" Lower runtime overhead

" Profile generation can be performed off-line

" No need to generate special training data
" Profiles can be generated based on real (even end user) program execution

= And can be aggregated from a number of runs

" Source-oriented profile

= Applicable even after (reasonable) source code changes

Easier to integrate with build systems

" New release can use profiles generated with older release

18 ©ARM20I6 ARM



gcc 6.1 -O3 -fauto-profile

adrp x6, F E+0xf920

add x0, x6, #0x920
ldr wl, [x6,#2336]
add x5, x0, #0x1d, 1sl #12
mov w2, #0x1

add x5, x5, #0x4bc
ldr w3, [x0,#4]
cmp wl, w3

b.le main+0x30

str w3, [x6,#2336]
mov w2, #0x0

str wl, [x0,#4]
add X7, x0, #0x4
ldr w8, [x0,#4]
ldr w4, [x7,#4]
cmp w8, w4

b.le main+0x50

str w4, [x0,#4]
mov w2, #0x0

str w8, [x7,#4]
add x14, x7, #0x4
1dp w9, wl0, [x14]
cmp w9, wl0

b.le main+0x68

mov w2, #0x0

©ARM 2016

stp
add
ldr
ldr
cmp
b.le
str
mov
str
ldp
cmp
b.le
mov
stp
ldp
cmp
b.le
mov
stp
ldp
cmp
b.le
mov
stp
ldp

wlO, w9, [x14]
x11, x14, #0x4
wl3, [x14,#4]

wl2, [x11,#4]

wl3, wl2
main+0x88

wl2, [x14,#4]

w2, #0x0

wl3, [x11,#4]

wl4, wl5, [x11,#4]
wld4, wl5
main+0x9c

w2, #0x0

wl5, wl4d, [x11,#4]
wle, wl7, [x11,#8]
wle, wl7
main+0xb0

w2, #0x0

wl7, wl6, [x11,#8]
wl8, w0, [x11,#12]
wl8, w0

main+0xc4

w2, #0x0

w0, wl8, [x11,#12]
wl, w3, [x11,#16]

cmp
b.le
mov
stp
1dp
cmp
b.le
mov
stp
ldp
cmp
b.le
mov
stp
1dp
cmp
b.le
mov
stp
add
cmp
b.ne
cbz
mov
ret

wl, w3

main+0xd8

w2, #0x0

w3, wl, [x11,#16]
w7, w8, [x11,#20]
w7, w8

main+0xec

w2, #0x0

w8, w7, [x11,#20]
w9, w4, [x11,#24]
w9, wd
main+0x100

w2, #0x0

w4, w9, [x11,#24]
wlO, wl2, [x11,#28]
wl0, wl2
main+0x114

w2, #0x0

wl2, wl0, [x11,#28]
x14, x11, #0x20
x14, x5
main+0x54

w2, main+0x4

w0, #0x0
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gcc-6.1 results

metric -0O3 -03
-fprofile-use -fauto-profile

time elapsed 3.268757833 s 2.504173270 s 2.806803990 s
(-1.1% vs 4.8) (-23.4% vs -O3) (-14.1% vs -O3)
cycles 6,536,735,848 5,007,557,329 5,612,823,771
(-1.1% vs 4.8) (-23.4% vs -O3) (-14.1% vs -O3)
instructions 5,806,220,662 3,873,453,819 3,649,604,577
(-39.5% vs 4.8) (-33.3% vs -O3) (-37.1% vs -O3)
IPC 0.89 0.77 0.65

Cortex-A57
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Sampled profile quality

Sampled profiles are inaccurate by nature

To analyze branch frequency, samples should be focused on branches
" Precise sampling on “branch executed” events
= Branch history stack (perf record -b)

* Processor trace

All this require hardware support

Branch history drastically improves statistical profile quality with little overhead

= ““Taming hardware event samples for precise and versatile feedback directed optimization”
paper
Processor trace provides accurate branch information but increases overhead

= May be reasonable for performance critical portions

©ARM 2016 ARM



SPEC2006 results

" Google’s AutoFDO gcc branch provided real improvements up to 15%, as described in
“Hardware Counted Profile-Guided Optimization” paper

15.00%

M Local trial
M Google paper

astar povray libquantum h264ref Ibm xalancbmk milc

gcc-google-4.8, x86_ 64, SPEC2006 result improvement with “—O2 —fauto-profile=autofdo.gcov” over “-0O2”
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Challenges with sample based FDO

= Not 100% mature tools

" Profile compatibility issues

* Requires detailed debug information for binaries

" Sometimes hard to achieve in production releases

= Observed instability of results
" Profile generated for AutoFDO optimized binary can cause performance regression in the next build
= Usually result of lost information about execution hotspots, eg:
if (cond) x = a; else x = b;
converted into

csel x, a, b, cond

©ARM 2016
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FDO in LLVM

* |nstrumentation based FDO

$ clang -03 -fprofile-instr-generate bubble.c \
-0 bubble-03-profile-instr-generate

$ clang -03 -fprofile-instr-use=bubble.profdata bubble.c \
-0 bubble-03-profile-instr-use
* AutoFDO support currently catching up with gcc results
$ clang -03 -g bubble.c -0 bubble-03
$ perf record -b bubble-03
$ create_llvm_prof --binary=bubble-03 --profile=perf.data \
--out=bubble-03.prof -format=text

$ clang -03 -gline-tables-only \
-fprofile-sample-use=bubble-03.prof \
bubble.c -0 bubble-03-profile-sample-use

24 ©ARM20I16 ARM



Example LLVM AutoFDO profile

©: void Proc 3 (Rec Pointer *Ptr Ref Par) Proc 3:728:14

1: /******************/ o

2: /* executed once */ 7 14

3: /* Ptr Ref Par becomes Ptr Glob */ 8: 14 Proc 7:10
4: {

6: /* then, executed */

7: *Ptr Ref Par = Ptr Glob->Ptr Comp;

8: Proc 7 (10, Int Glob, &Ptr Glob->variant.var 1.Int Comp);

9: } /* Proc 3 */

25 ©ARM20I6 ARM



Deployments

= Commercial products

= Often only for performance critical portions

= Open source projects like CPython and Firefox

= Support for FDO available in build system but not turned on by default

Google data center

= Oirigins of AutoFDO
Chrome & ChromeOS

" Cross profiling

ClearLinux

©ARM 2016 ARM



AutoFDO at Google data center

= At data center scale, even fractional improvement translates into significant
financial savings

= “AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale
Applications” paper discusses Google’s infrastructure:

Source
Depot

Release
Binary
Archive

Binary
Index &
Symbols

perf_events
Daemon

Figure 1. System Diagram.
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Future

" Intensive development in LLVM

* Fueled by Google work on replacing gcc in their work flows

* More hardware providing relevant data
* Intel PT already available in mainline kernel
" ARM’s CoreSight trace mostly merged

= New PMU features in both architectures

" Wider deployment in managed environments
* Very natural technique for JITs, can avoid most static environment challenges

= Many use FDO already
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Summary

* There is no magic “Make My Program Faster” compilation option

= Although, carefully used, FDO can bring significant improvements

* |nstrumentation based FDO known since mainframes era

= And yet surprisingly rarely used in practice

Sample based AutoFDO lowers entry barrier

= But still requires careful maintenance

Do give it a try!

= Just make sure to measure effects
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