Building
Embedded User
lands

Ned Miljevic & Klaas van Gend
Solution Architects, MontaVista Europe / USA

montavista-

’ K 3 e T4
Lyl ’(. : :
KX TR
ROBRIAHRIISI 3]
‘0 e f{‘;‘f{fff{f{{‘ w. ok
40 Y {‘;{{“““?{“g !

BRRKRRRNS §
i

iy
RE ML -

« Best sounding
home network
audio player ever

* Linux powered!

 Father of twin little gu with Californian
masks, plastic Japanese swords and
Mongolian outfits

SO L T, e
7 f--"-. wh i 4
3 Rl b
o % 4

Who is Klaas van Gend? W/

7
o
T

Klaas-the-Geek:

e Started programming age 13

* First encountered Linux 1993

« Software Engineer since 1998
 Lead developer of umtsmon

* Program Committee member for
various open source conferences

“S¥&d Klaas-the-Sales-Guy:

 Joined MontaVista as FAE (not sales) 2004
« Was part of European MontaVista Team

» Awarded FAE of the year 2006

« Working in USA until July 1st, 2009

>
-
‘©
)
—
-+
Q
Q.
)
©
>
=
®
n
n
)
&
)
c
-+
o
c
o
©
0
)
(@)}
®
£

Kernel vs User Space

Today: building the file system(s)

Finish q

userland

-
-
-
-
-
—
—
-
-
-
-
-
—
-
-
—
—
-
-
-
-
-
-
-
-
—
—
-
-
-
-
-
-
-
-
—
—
—
-
-
-
-
-
-
-
-
—
—
-
-
-
-
-
-
-
-
—

St rt 1 b}
2 “desktop/server” embedded

The big decisions in User Space

— So many packages, so many choices

Build procedures and challenges

— Horizontals, Verticals and “diagonals”
Existing user land build mechanisms

Summary

Some big decisions
In user space

*Choose a libc
*Shell commands vs busybox
«Startup Mechanisms

___.--—_—'--...“
montavista-

Pick a libc

There are many C libraries to choose
from, and some obvious criteria.

Impact is tremendous:
* quality of C++ support
* completeness
- stability
* size / configurability
— libopt !
— upgrade in the field?
- availability for architecture
- compiler modifications (uClibc!)
+ do not underestimate community !
—Security / bugfixes / future

POSIX
/ NPTL

i18n /
L10n

RT

size

Actv
comm

GNU
glibc

Eglibc

uClibc

Newlib

Dietlib

BSD
libc

Busybox or full tools?

Busybox

479 kB

Contains 177 commands:

addgroup adduser ash cat chgrp chmod chown cp cpio date dd
delgroup deluser df dmesg echo egrep false fgrep grep gunzip gzip
hostname ip ipcalc kill In login Is mkdir mknod mktemp more mount
mt mv netstat nice pidof ping ping6 ps pwd rm rmdir run-parts sed sh
sleep stty su sync tar touch true umount uname usleep vi watch zcat
linuxrcdevfsd fdisk getty halt hdparm hwclock ifconfig ifdown ifup init
insmod klogd loadkmap losetup Ismod makedevs mkswap modprobe
nameif pivot_root poweroff reboot rmmod route start-stop-daemon
sulogin swapoff swapon syslogd vconfig [[[arping awk basename
bunzip2 bzcat chvt clear cmp crontab cut dc deallocvt dirname
dos2unix du env expr find fold free ftpget ftpput head hexdump
hostid id install killall last length logger logname md5sum mesg
mkfifo nc nslookup od openvt passwd patch printf readlink realpath
renice reset rpom2cpio rx seq shalsum sort strings tail tee telnet test
tftp time top tr traceroute tty uniq unix2dos unzip uptime uudecode
uuencode vlock wc wget which who whoami xargs yes chroot crond
fbset httpd inetd rdate telnetd

sh 312k (tcsh), 656k (bash), 86k (dash)
cp 55k

grep 105k

login 34k

mkdosfs 24k

mkfifo 17k

mkfs.ext3 39k

mount 78k

mv 63k

nice 18k

rm 38k

setserial 20k

sleep 18k

stty 42k

getty 15k (agetty), 93k (mgetty)
ifconfig 61k

Vi 352k (nvi), 1003k (vim)

TOTAL 1291 kB

Source: MontaVista Pro 5.0 for x86_pentium3

startup mechanisms

System V approach:
— [etc/init.d/rcX.d/*

— /etc/inittab

* Runlevels !!!

« Many options like wait, respawn, powerwait/powerfail
« Scripts usually require sed, grep, awk present

« Many fork/exec

“Busybox approach”

— [etc/inittab (optional)

* Much simpler, no concept of runlevels, will start console
— 1 simple /etc/rcS file

* can run other files if needed

New developments:

— Upstart
— runit

Build procedures and
their challenges

___.--—_—'--...“
montavista-

Feature selections

System Designer must map requirements to packages

For a non-Linux user, this poses a significant challenge

 Finding packages that fulfill requirements:
— Why is the BGP router called “zebra”?
— Why are there multiple, different “zebra” projects?

- What's the advantage of package A over B? (Gnome vs KDE ?)
« Do | need all features or strip down?

— “need threads”
— “need webserver”
— “need SNMPv3”
— “need GUI”

use libc with NPTL / uClibc with LinuxThreads?
use Apache / boa / thttp / busybox (etc)

use NetSNMP, Level9, write own
QT, DirectFB, GTK, LinuxPEG, etc

| need it quick.
Let’s do it by
hand

Disadvantages

Limited architecture support
» Usually x86 only

No other features than the standard ones
* Rebuilding packages is probably beyond this user’s knowledge

No reproducibility, high risk for human errors But | had fun
« More or less solvable and learned

— use scripts for each transition a lot!
— Generate manifests
— Still not future proof

A lot of work !!!
- And no guarantee of success

vertical

kernel

Examples:
LICENSE files
Nno man pages
SSL support
ython bindings
IPv6 awareness

SELinux compat.
LDAP support

Dependencies

Verticals often are dependencies:

* You need other packages to make it work

Diagonals may add dependencies:

* Adding LDAP as requirement probably should
add OpenLDAP to the target file system

* Adding “no_man” should remove all man pages
from the target file system — and man itself

Dependency resolution can be a daunting task
* “RPM hell” anyone?

At least two types of dependencies exist:
- Build-time dependencies, e.g: cmake, glade, gt-devel
* Run-time dependencies, e.g: libcrypto, perl, PAM, libqgt

“Pristine” vs patched: recipes

Building your user land from source gives more choices
— It doesn’t make smaller binaries by definition!

Building from source also introduces new problems

— Bug fixes / Feature adds
— Tracking upstream releases

Make sure to differentiate between the original released source tarball
(“upstream”) and any patches on top of that

— Patches change or (hopefully) go away with newer releases!
— Kernel folks: look at quilt by Andrew Morton

Definition:
A recipe describes how to patch & build a certain package from source

— Preferably taking dependencies and diagonals into account
— E.g. RPM’'s SPEC files and Gentoo’s ebuilds are examples of recipes

Cooking with recipes (1)

f:r' AR Good food
Ment 4

Sous Chef
reCipes e

Grocer ingredients
Butcher | etc

Create menu
Recipe f

suggestions

=M Chef Customers

Versioning & Stabilization

Build machine

Packages,
Toagls,
File Systems

Fixes,
Recipe
suggestions

Designer Release

The cross compilation challenge

+ Variable types / sizes:

— 32-bit: sizeof (int) == sizeof (long)
— 64-bit: sizeof (int) == sizeof (long long)
— Endianness

— Packing of structs
— Different ABls

* The include directories:

- /usr/include usually contains system specifics and inline assembly
— Careful with location + output from scripts like pkgconfig or gmake

« Compiler names / arguments:
— Name: gccvs arm v6t vip-gcc
— Arguments: -march=x86 VS -mcpu=mips2 fp le
— GNU Autotools

The Autotools challenge

automake| (um Mala(rer:”e.

mmm) | qutoconf 1
il Makefile.
i | in

autoheader ‘ ‘n

)

. /configure usually tests for system/architecture-specific topics
by running small test programs — on the host?7??

Don’t reinvent the wheel - learning curve

If you do things by hand you need to know all details presented here

But:

* Recipes should contain most of the “what to build from what” knowledge
— How difficult is creating/modifying new recipes?

+ A tool should do all the work — take the recipes and brew the file system

— How difficult is the tool to setup and how self-explanatory are the error messages?
— How does a master chef differ from my mother?

The combo should hide many of the ugly complexities
— like cross-compiling and autotools

Quiz 1: What is a Linux distribution?
Quiz 2: Why have most distributions invented new tools?
Quiz 3: Which is best for embedded?

Some analysis of available
build systems

___.--—_—'--...“
montavista-

Note about the next slides

To save time during the presentation, we skipped all
the slides in this chapter and ran immediately to
the summary table at the end.

Buildroot

Essentially a set of Makefiles and patches that generate the toolchain
and the target FS

patches for packages and compiler to ensure proper cross-compile
uClibc based — no other libraries supported

good support for different architectures and boards
cross-compilation environment works across different hosts

adding your own packages: modify the example Makefile

OK for building a single executable — for building libraries we have to
find our own recipe

Scratchbox

A sandbox system for building Linux systems from scratch

— ARM and x86 supported
— Development system for maemo
— Debian centric

— ./configure test for gcc producing executable files = 'cpu transparency’
(gemu or real target [sbrsh])

— Prescribed toolchain

— glibc and uClibc support

— Libraries provided by toolchain or rootstraps

— Package management through apt

— Reported having been used to build Slackware for ARM
— ./configure — make cycle

— Well documented (web site)

— Succeeded by “scratchbox2”

Scratchbox2

scratchbox2

* more host OS agnostic
« documentation??

RPMbuild

Build-your-own RPMs

Used by Fedora / Red Hat, openSuse, MontaVista, Mandriva

Works with a RPM spec file (metadata) — build tool agnostic

Contains instructions how to prepare, compile and install the package
Works within the usual RPM directory structure

$define buildroot <my root>
Exaﬁwﬂei # below is a standard RPM macro

$define prefix <my prefix>

sprep

ssetup

Sbuild

sconfigure

make

%install
rm —-rf %{buildroot}
make install DESTDIR=%{buildroot}

$clean
rm —-rf %{buildroot}

Fedora on ARM

* Fedora approach: native build — on ARM boards or gemu
* Provides a target file system — can run in gemu
« Target FS built with rfsbuild - yum used for package maintenance

* Needs quite a capable Linux system to run:

— Python 2.4 and several other packages
— qgemu for native compilation (distcc is possible)

- Mainly supported by Marvell

 Architecture: ARM
— ARMVS, LE, Soft-Float, EABI
« What if we need something else??

Kconfig-based

- Stems from the Linux kernel configurator

- Examples:

— uClibc

— PTXdist

Uses quilt for patching
Configuration: make menuconfig

Adding new packages implies writing new kconfig files

Community:
— At least 20 very active participants from various companies
— Used in real embedded systems
— Various architectures used
Does allow for diagonals (sort of) through the kconfig mechanism

Ebuilds

Created by Gentoo project for Portage use
* Able to cross compile and/or perform a sandbox install

“portage” “emerge” “ebuild”
=concept =tool =recipe

The ebuild contains:
— Run time & compile time dependencies,
— Instructions for download,
— Instructions for patch,
— Compilation,
— Installation

- USE flags work roughly as diagonals
— /etc/make.conf
— /etc/portage/package.use

Ebuild for “beep”

Copyright 1999-2006 Gentoo Foundation

Distributed under the terms of the GNU General Public License v2
SHeader: /var/cvsroot/gentoo-x86/app-misc/beep/beep-1.2.2-
rl.ebuild,v 1.3 2006/08/19 11:00:37 kloeri Exp S

inherit eutils base

DESCRIPTION="the advanced PC speaker beeper"
HOMEPAGE=http://www.johnath.com/beep/

SRC URI="http://www.Jjohnath.com/beep/${P}.tar.gz"
LICENSE="GPL-2"

SLoT="0"“
KEYWORDS="alpha amd64 ~ppc ~ppc6bd4 ~sparc ~x86"
IUSE=""

PATCHES="${FILESDIR}/${P}-nosuid.patch™
src_compile () {

emake FLAGS="S{CFLAGS}" || die "compile problem"“
}

src_install() {
dobin beep
fperms 0711 /usr/bin/beep
doman beep.l.gz
dodoc CHANGELOG CREDITS README

montavista: Bitbake

 Tool for executing tasks and managing metadata

Derived from Portage

Basis of OpenEmbedded

Distributions using it: Angstrom, OpenMoko, Poky, SlugOS
Learning curve is very steep

Example recipe:

DESCRIPTION = "hello world sample program"
PR = "xQO"

DEPENDS = ""

SRC_URI = " "

Bitbake (continued)

S = "S{WORKDIR}"

do compile () {
${CC} S${CFLAGS} S${LDFLAGS} -o hello hello.c

do install () {
install -d ${D}S{bindir}/
install -m 0755 ${S}/hello ${D}S{bindir}/

FILES S${PN} = "${bindir}/hello"

The Comparison Chart

Tool / Recipe Hori | Vert | Diag | Cross | Multi | Comm | Learning
Distro onal compile | Arch |unity | Curve

Buildroot Makefile
Yes | No| No | Yes | Yes |Medium| Med/lo

Scratchbox | Makefile
Yes | No | No Yes? | Yes | Few? Med

RPM RPM Run ,

SPEC Yes fime No Yes Yes 77?7 | Med/Hi
Fedoraon | RPM Run ,
ARM SPEC Yes time No | Yes? | Yes | Few | Med/Hi

KConfig .config
Yes | ~ ~ Yes | Yes | Some | Med/Lo

Portage Ebuild .
Yes [Yes| Yes| Yes | Yes | Big Med

Bitbake Recipe
Yes | Yes| Yes| Yes | Yes | Some @

Conclusions & Summary

___.--—_—'--...“
montavista-

Summary

Building a file system should not be an afterthought

— ltis complex, it has loads of impact on other features

— It is system designer complexity — don’t leave to the junior engineer
Product features hugely impact file system design

— And vice versa: 64MB is cheaper than 256 MB

Recipes and Diagonals
— very important to platform products
— Simplify a designer’s job
— Require a community to work well

There are many tools to simplify the task
— At least, they claim to do so

MontaVista is going to move away from RPMbuild

Questions & Thank You

nmiljevic@mvista.com
Klaas.van.gend@mvista.com

"""-__--"""\
montavista-

