Efficient JTAG-based Linux
kernel debugging

Embedded Linux Conference Europe - 2011

ADCSH#: #ittHHHt Revised: 23 September, 2010

Rationale ﬁ

Embedded Linux in Devices: sustained growth for

Mmany years and more recently increasing success of System
Middleware for Devices based on Linux, especially Google Android.

The number of MPSoC running embedded Linux is
increasing and accordingly the software architecture is adapting,
getting scalable and parallel. Now taken into account by chip
vendors: cross triggering and system-wide tracing support IPs.

STMicroelectronics Internal requirements and
historical facts The software for multimedia appliances (set-
top-boxes) is part of the reference design we provide. We needed
to port a scalable Multimedia Streaming and Processing Framework
from an RTOS to Linux by the time when mastering wake-up
latency would mean doing kernel streaming (or using a RT co-
kernel...)

ADCSH#: #HH#H#HHE Revised: 23 September, 2010 1

1574

Multi-core debugging and tracing

Chip vendors have taken into account the need for MP-specific
debug and tracing infrastructure.

SoC

. Coresight
Instruction

Trace

|:| System
Trace

___JIAI\GI_cham___I :

ADCSH#: #HH#H#HHE Revised: 23 September, 2010 2

Simple real word use case IS72

Set-top-box with internet browser: debug an erratic
situation in a driver rooted in userland.

webkit Debugger
internet content rendering
i Frame of interest
1ibOpenGl .-
l U-mode unwinding
PAN
\
sys_ioctl () Syscall unwinding
N
K-mode unwinding
mali Jioctl () |
D =T breakpoint

ADCSH#: #HH#H#HHE Revised: 23 September, 2010 3

Simple real word use case IS72

(gdb) b sys_open

Breakpoint 4 at 0x8006dd40: file fs/open.c, line 1060.
(gdb) c

Continuing.

[Switching to 1s]

Breakpoint 4, sys open (filename=0x2956bc9c "/etc/ld.so.cache", flags=0, mode=1) at fs/open.c:1060
1060 ret = do_sys_open(AT_FDCWD, filename, flags, mode);

(gdb) bt

#0 sys_open (filename=0x2956bc9c "/etc/ld.so.cache", flags=0, mode=1) at fs/open.c:1060

#1 0Ox80008920 in syscall call ()
#2 0x29568244 in open ()

—_

#11 Ox2955bb78 in _dl_start_final (arg=0x7b82fd80) at rtld.c:328 — usermode unwinding
#12 _dl_start (arg=0x7b82fd80) at rtld.c:554
#13 0x295588cc in _start ()]

ADCSH#: #iHHHH Revised: 23 September, 2010

4

Kernel debuggers for devices Lys

KGDB
Requires sufficient support for RS-232 or Ethernet

Won’t remain in production / flashed kernels
Requires kernel co-operation, less usable for serious crashes

JTAG, the bold way
Find a JTAG probe that has compatibility with gdb-remote protocol
Debug vmlinux as a baremachine “hello word” application
Some of good tips and tricks on the web:

SMP: if you are lucky, the JTAG probe “gdbserver” exposes one
thread per core in gdb.

ADCSH#: #iHHHH Revised: 23 September, 2010

http://www.elinux.org/DebuggingTheLinuxKernelUsingGdb

V]

Kernel debuggers for devices, fancier AYS

Commercial Solutions

Must be very well defined in terms of supported targets, software
versions and debugging hardware because support and service can
be part of the package.

JTAG, the presented way: implement Linux Awareness
Find a JTAG probe compatible with gdb remote protocol

Handle kernel modules the same way as shared libraries, with
init/release hooking.

Deal with memory translation and MMU settings, as the kernel will
not do it for us

Expose Linux tasks as selectable threads in gdb
Allow stepping any of the scheduled task (one per core)
Allow backtracing
Allow breakpointing

ADCSH#: #HH#H#HHE Revised: 23 September, 2010 6

Linux Awareness Components Layout Kys

L/A is a self contained extension, compliant with GDB target model!

target

(gdb) maint print target-stack
The current target stack is:
- linux-aware (Linux-aware target interface)
- stmc-remote (STMC remote target in gdb-specific protocol)
- exec (Local exec file)
- None (None)

host

.l

ADCSH#: #iHHHH Revised: 23 September, 2010 7

Mapping Linux tasks to gdb threads IS72

Purpose

Map anything that has a task_struct to a thread for gdb

Be able to select this thread through usual gdb commands and
get the backtrace
list the sources matching a frame, resolve the symbols
set breakpoints, stepi/nexti, step/next, finish, return...

Howto
Enumeration walk the kernel linked lists of task_struct
Housekeeping track process creation and deletion

Distinguish scheduled ones (stepping allowed) from non-scheduled
ones (stepping not allowed)

ADCSH#: #HH#H#HHE Revised: 23 September, 2010 8

Mapping Linux tasks to gdb threads IS72

Minimal data needed for Linux process housekeeping:

task_struct.comm executable command string

task struct.pid Process 1ID.

task struct.tgid Thread Group ID

task_struct.mm tells whether it is an anonymous context or not

task struct.active_mm tells the actual page dir. used in this context

Constraint: accessing a remote target through JTAG

GDB internal APIs and good practices encourage dynamic typing:
types (size, endianness) are provided by the target “object”

But accessing a remote hardware: better read a few big chunks of
data than many individual structure fields !

ADCSH#: #iHHHH Revised: 23 September, 2010

Mapping Linux tasks to gdb threads IS73

Populating the process list
Flat exploration: like for_each_process in sched.h

init_task

> tasks.n >

h N

tasks.p €

Works, but discovery of tasks done in creation order, while
we want to regroup the threads of a process...

other “swappers” (SMP case) not reachable this way

ADCSH#: #HH#H#HHE Revised: 23 September, 2010 10

Mapping Linux tasks to gdb threads IS73

Populating the process list
= Alternate exploration:

children.n > siblings.n

= Other “swappers”. added by default, one per h/w thread reported by
underlying remote target. Reachable through the runqueues “idle” field.

ADCSH#: #itHH## Revised: 23 September, 2010 11

Mapping Linux tasks: housekeeping IS73

Find out when to rebuild the Linux task list

done when the Linux-Awareness target processes an
inferior event: happens very often (stepping) and must be

optimized!
breakpointing do_fork / do_exit is too intrusive.
pid.c
struct pid_namespace init_pid_ns = {
.kref = {
.refcount = ATOMIC_INIT(2),
¥
.pidmap = {
[@ ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
}s
.last_pid = 0,
.level = 9,

.child reaper = &init task,

exit.c ¥

__get _cpu_var(process_counts--)

$>nm vmlinux | grep process_count
C0021280 T per_cpu__process_counts

ADCSH#: #itHH## Revised: 23 September, 2010 12

Mapping Linux tasks Lys

Accessing the per-cpu variables in GDB
Fairly simple, as of today we only need:
__per_cpu_offset offset of each CPU’s per_cpu page
process_count
per_cpu__runqueues (or occasionally runqueues)
rg->idle
rq->curr currently scheduled task

Finding the currently scheduled task

“current = sp & ~(THREAD SIZE-1)": this won't work when
putting the target in debug mode while the core is running
a usermode code page.

We need to check rg->curr.

ADCSH#: #itHH## Revised: 23 September, 2010 13

Kernel Module Debugging Lys

Main features
Allow init/exit debugging without specific kernel code.
Resolve path to modules.dep and pull symbols automatically.
Reuse the solib infrastructure in gdb

GDB solib callbacks
soops_bfd_open

soops_relocate section_addresses resolving and “linking” sections
soops_open_symbol_file object

soops_special_symbol handling related to manual symbol-loading
SOOpS_current_sos modules enumeration
soops_in_dynsym_resolve code hide the TLB-miss handler when

stepping through a VM code page

ADCSH#: #iHHHH Revised: 23 September, 2010

14

Kernel Module Debugging IS72

Building the modules list

Usual kernel list starting with symbol “modules”

modules —> > list.n >

For each module we read a block of RAM to gather the name...
and info needed to properly handle the section layout

.init .module_init .module core .init size .core size .init text size
.init text _size .core text size .core_text size

Hoping they won’t change offset too much in struct module!

ADCSH#: #HH#H#HHE Revised: 23 September, 2010 15

Kernel Module Debugging Lys

Virtual memory handling
Architecture specific part (arm/memory.txt)!

PAGE_OFFSET high_memory-1 Kernel direct-mapped RAM region.
This maps the platforms RAM, and typically
maps all platform RAM in a 1:1 relationship.

TASK_SIZE PAGE_OFFSET-1 Kernel module space
Kernel modules inserted via insmod are
placed here using dynamic mappings.

Accessing modules code pages requires memory translation.

For pages between TASK_SIZE and PAGE_OFFSET_1 we set
pdg = swapper_pg dir + 8* (addr >> PGDIR SHIFT)

Cope with physical memory offset: pdg += phys_offset

We read phys_offset from: meminfo.bank[@].start

ADCSH#: #iHHHH Revised: 23 September, 2010

16

Kernel Module Debugging

From ARMv7 Arch. Ref. manual: small page translation flow

Translation Table
Base Register

MVA

PA[31:0] of
first-level descriptor

PA[39:32] = 0x00

First-level
descriptor

PA[31:0] of
acond-level descriptor

PA[39:32] = 0x00

Second-level
descriptor

PA[31:0]
PA[39:32] = 0x00

31

31

First-level

read

14N 13-N 0
Translation base SBZ
31 32N 31N 2019 121 0
First-level |Second-level ’
¥ | tableindex | table index Page index
- 14N 13N < = 21 ¢
: Firstlevel |,
Translation base table index 0‘:0
J
109 21 @
Access |
Page table base address control flelds 0;1
31 h 109 L 21 @
Second-level
Page table base address table index 00
Seoond'Lee\;e(,l at 12 14 21 0
Small page base address Access 1
pag control fields
at JL 1211 T 0
Small page base address Page index

ADCSH: ##H#H#

Revised: 23 September, 2010

17

Kernel Module Debugging Lys

MMU switching

GDB remote server must supply architecture specific support
This is currently the only arch specific constraint on gdbserver
Very simple interface for ARM, but can be tricky on gbdserver side.

Remote specific command example (ST-Microconnect):

st cpl5 cl1 © coO © read System Control Register

st cpl5 c2 @ cO O read Translation Table Base Register ©
st cpl5 c2 @ cO O OxkX write TTRBO

st cpl5 cl3 0 co 1 read Context ID register (ASID)

st cpl5 cl13 @ cO 1 Oxx%x write ASID

Example with Qemu:
Qgemu.st.mrc.c2 base0;%x

Qgemu.st.mrc.cl3 context;%x

ADCSH#: #iHHHH Revised: 23 September, 2010

18

Kernel Module Debugging Lys

Hooking the init and release steps of a module’s life

Init sections are freed after module loading completed
In order to debug in module_init section: hooking required

* Hit breakpoint here N
* read “*mod” = ptr to the module

* retrieve module info,

* resolve symbols

* solib add

Aﬁj\:,set a breakpoint in init routiné//

sys_load module

y

load_module

!

module_finalize(*hdr, *sechdr, *mod)

Detect module unload with breakpoint in
module arch _cleanup

Setting a pending breakpoint triggers these hooks,

Disabled by default to avoid heavy debug-mode activity when
loading series of modules

Vi el 'l

ADCSH#: #iHHHH Revised: 23 September, 2010

19

Userland support Lys

Debugging userland with the Linux Kernel Debugger

not so simple, not so sensible, but some comfort can be granted to
the user, like:

task struct.active_mm.pgd
translate VM addresses: task struct.active mm.id

pull process symbols, switch "main” and symbol space when
stepping, backtracing usermode

— Setting a breakpoint in kernel mode, then unwinding and stepping
up to usermode is not so hard to achieve.

ADCSH#: #itHH## Revised: 23 September, 2010 20

Android support Kys

About Google’s NDK

Fine for attaching to a running Linux process
Used not to work for regular cross-debugging (fixed?)

We had to provide users with means to debug the early init of a
newly spawned Dalvik VM

New gdb commands

wait_exe_uid execute canned commands when hitting
do_fork for an executable with the given UID

wait_android_vm execute canned commands when hitting
do_fork for an executable with UID in the

range matching Android VMs (AID_APP)

ADCSH#: #iHHHH Revised: 23 September, 2010

21

Project Status and Maturity Kys

Project Maturity

Historically based on GDB branch for ST40(sh4)/ST200 cross
debuggers, many ST-internal contributors accountable for credit:

Mark Phillips, Miguel Santana, Chris Smith, Frederic Riss, ...

Widely deployed internally through Eclipse integration
(STWorkbench)

Ongoing development for ARM MPSoC targets

Possible improvements

Leverage contribution of GDB as of 7.x: many contributions in the
fields of scheduling control and multiple address and symbol space
management.

el

Vi /i

ADCSH#: #itHH## Revised: 23 September, 2010 22

About contribution and prospective Kys

Feedback

We will consider the possibility to contribute this work upon positive
feedback from the community.

Prospective work

Could be a basis to develop “"Debuggers for Linux Cluster On Chip”
ongoing PhD in this field (kevin pouget at st dot com)

Benefits of contribution

in mainstream GDB: encourage better core/device abstraction

in mainstream Kernel: encourage keeping access to data used for
debug agnostic to kernel version and CONFIG_XXX and “JTAG
friendly”

In JTAG probe software: support GDB-remote, present a hardware
thread for each core

ADCSH#: #itHH## Revised: 23 September, 2010 23

A word of conclusion ﬁ

Suggestions for JTAG probe software implementers
act like a remote gdbserver, handle sw/hw breakpoints

Standardize “remote” commands for architecture specific coprocessor
settings (typically cp15 operations on ARM)

Expose one hardware thread per core

Expose the implementation choices for SMP (whether all-block or
not) thanks to remote target (gdb target abstraction).

Linux Kernel
so far we cope with most versions and CONFIG variants,
but would be nice if :

Used offsets and kernel symbols not moving too often

Fields needed for Linux-awareness kept contiguous to optimize
transfers and limit intrusiveness.

ADCSH#: #itHH## Revised: 23 September, 2010 24

4

Thank you !
Demo ...

and questions

Vi et 1l n
ADCSH#: #H#H#HH Revised: 23 September, 2010 25

