
ADCS#: ####### Revised: 23 September, 2010

Efficient JTAG-based Linux

kernel debugging

Embedded Linux Conference Europe - 2011

ADCS#: ###### Revised: 23 September, 2010

Rationale

 Embedded Linux in Devices: sustained growth for
many years and more recently increasing success of System

Middleware for Devices based on Linux, especially Google Android.

 The number of MPSoC running embedded Linux is
increasing and accordingly the software architecture is adapting,

getting scalable and parallel. Now taken into account by chip
vendors: cross triggering and system-wide tracing support IPs.

 STMicroelectronics Internal requirements and
historical facts The software for multimedia appliances (set-

top-boxes) is part of the reference design we provide. We needed
to port a scalable Multimedia Streaming and Processing Framework
from an RTOS to Linux by the time when mastering wake-up
latency would mean doing kernel streaming (or using a RT co-
kernel…)

1

ADCS#: ###### Revised: 23 September, 2010

Multi-core debugging and tracing

2

SoC

DBU

Cortex-A9

Dual Core

 companion

processor

 companion

processor

 companion

processor

DAP

Coresight

Instruction

Trace

STM

TD

I

TDO

T
Y

P
E

-H

TD

I

TDO

TD

I

TDO

TD

I

TDO

J
T
A

G
 c

h
a

in

JTAG

STM

Trace

port

System

Trace

Chip vendors have taken into account the need for MP-specific
debug and tracing infrastructure.

ADCS#: ###### Revised: 23 September, 2010

Debugger

Simple real word use case

 Set-top-box with internet browser: debug an erratic

situation in a driver rooted in userland.

3

webkit
internet content rendering

libOpenGl

mali_ioctl()

sys_ioctl()

breakpoint

Frame of interest

U-mode unwinding

Syscall unwinding

K-mode unwinding

ADCS#: ###### Revised: 23 September, 2010

Simple real word use case

(gdb) b sys_open

Breakpoint 4 at 0x8006dd40: file fs/open.c, line 1060.

(gdb) c

Continuing.

[Switching to ls]

Breakpoint 4, sys_open (filename=0x2956bc9c "/etc/ld.so.cache", flags=0, mode=1) at fs/open.c:1060

1060 ret = do_sys_open(AT_FDCWD, filename, flags, mode);

(gdb) bt

#0 sys_open (filename=0x2956bc9c "/etc/ld.so.cache", flags=0, mode=1) at fs/open.c:1060

#1 0x80008920 in syscall_call ()

#2 0x29568244 in open ()

…

#11 0x2955bb78 in _dl_start_final (arg=0x7b82fd80) at rtld.c:328 usermode unwinding

#12 _dl_start (arg=0x7b82fd80) at rtld.c:554

#13 0x295588cc in _start ()

4

ADCS#: ###### Revised: 23 September, 2010

Kernel debuggers for devices

KGDB

 Requires sufficient support for RS-232 or Ethernet

 Won’t remain in production / flashed kernels

 Requires kernel co-operation, less usable for serious crashes

JTAG, the bold way

 Find a JTAG probe that has compatibility with gdb-remote protocol

 Debug vmlinux as a baremachine “hello word” application

 Some of good tips and tricks on the web:

 www.elinux.org/DebuggingTheLinuxKernelUsingGdb

 SMP: if you are lucky, the JTAG probe “gdbserver” exposes one
thread per core in gdb.

5

http://www.elinux.org/DebuggingTheLinuxKernelUsingGdb

ADCS#: ###### Revised: 23 September, 2010

Kernel debuggers for devices, fancier

Commercial Solutions

 Must be very well defined in terms of supported targets, software
versions and debugging hardware because support and service can
be part of the package.

JTAG, the presented way: implement Linux Awareness

 Find a JTAG probe compatible with gdb remote protocol

 Handle kernel modules the same way as shared libraries, with
init/release hooking.

 Deal with memory translation and MMU settings, as the kernel will
not do it for us

 Expose Linux tasks as selectable threads in gdb

 Allow stepping any of the scheduled task (one per core)

 Allow backtracing

 Allow breakpointing

6

ADCS#: ###### Revised: 23 September, 2010

Linux Awareness Components Layout

7

GDB

Linux

Awareness

Remote

Exec

None

GDB Remote-

compatible

probe
tcp

vmlinux

jtag

(gdb) maint print target-stack

The current target stack is:

 - linux-aware (Linux-aware target interface)

 - stmc-remote (STMC remote target in gdb-specific protocol)

 - exec (Local exec file)

 - None (None)

L/A is a self contained extension, compliant with GDB target model!

host

target

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks to gdb threads

8

Purpose

 Map anything that has a task_struct to a thread for gdb

 Be able to select this thread through usual gdb commands and

 get the backtrace

 list the sources matching a frame, resolve the symbols

 set breakpoints, stepi/nexti, step/next, finish, return...

Howto

 Enumeration walk the kernel linked lists of task_struct

 Housekeeping track process creation and deletion

 Distinguish scheduled ones (stepping allowed) from non-scheduled
ones (stepping not allowed)

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks to gdb threads

9

Minimal data needed for Linux process housekeeping:

 task_struct.comm executable command string

 task_struct.pid Process ID.

 task_struct.tgid Thread Group ID

 task_struct.mm tells whether it is an anonymous context or not

 task_struct.active_mm tells the actual page dir. used in this context

Constraint: accessing a remote target through JTAG

 GDB internal APIs and good practices encourage dynamic typing:
types (size, endianness) are provided by the target “object”

 But accessing a remote hardware: better read a few big chunks of
data than many individual structure fields !

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks to gdb threads

10

Populating the process list

 Flat exploration: like for_each_process in sched.h

tasks.p

tasks.n next

prev

next

prev

init_task

 Works, but discovery of tasks done in creation order, while
we want to regroup the threads of a process...

 other “swappers” (SMP case) not reachable this way

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks to gdb threads

11

Populating the process list

 Alternate exploration:

 Other “swappers”: added by default, one per h/w thread reported by

underlying remote target. Reachable through the runqueues “idle” field.

thread_g.p

thread_g.n next

prev

next

prev

siblings.p

siblings.n next

prev

next

prev

children.n

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks: housekeeping

12

struct pid_namespace init_pid_ns = {
 .kref = {
 .refcount = ATOMIC_INIT(2),
 },
 .pidmap = {
 [0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 },
 .last_pid = 0,
 .level = 0,
 .child_reaper = &init_task,
};

Find out when to rebuild the Linux task list

 done when the Linux-Awareness target processes an
inferior event: happens very often (stepping) and must be
optimized!

 breakpointing do_fork / do_exit is too intrusive.

 pid.c

 exit.c

$>nm vmlinux | grep process_count

c0021280 T per_cpu__process_counts

__get_cpu_var(process_counts--)

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks

13

Accessing the per-cpu variables in GDB

 Fairly simple, as of today we only need:

• __per_cpu_offset offset of each CPU’s per_cpu page

• process_count

• per_cpu__runqueues (or occasionally runqueues)

• rq->idle

• rq->curr currently scheduled task

Finding the currently scheduled task

 “current = sp & ~(THREAD_SIZE-1)”: this won’t work when

putting the target in debug mode while the core is running
a usermode code page.

 We need to check rq->curr.

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

Main features

 Allow init/exit debugging without specific kernel code.

 Resolve path to modules.dep and pull symbols automatically.

 Reuse the solib infrastructure in gdb

GDB solib callbacks

 soops_bfd_open

 soops_relocate_section_addresses resolving and “linking” sections

 soops_open_symbol_file_object

 soops_special_symbol_handling related to manual symbol-loading

 soops_current_sos modules enumeration

 soops_in_dynsym_resolve_code hide the TLB-miss handler when

 stepping through a VM code page

14

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

Building the modules list

 Usual kernel list starting with symbol “modules”

 For each module we read a block of RAM to gather the name…

 and info needed to properly handle the section layout

.init .module_init .module_core .init_size .core_size .init_text_size

.init_text_size .core_text_size .core_text_size

 Hoping they won’t change offset too much in struct module!

15

list.n next next modules

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

Virtual memory handling

 Architecture specific part (arm/memory.txt)!

 Accessing modules code pages requires memory translation.

 For pages between TASK_SIZE and PAGE_OFFSET_1 we set

 pdg = swapper_pg_dir + 8* (addr >> PGDIR_SHIFT)

 Cope with physical memory offset: pdg += phys_offset

 We read phys_offset from: meminfo.bank[0].start

16

PAGE_OFFSET high_memory-1 Kernel direct-mapped RAM region.
 This maps the platforms RAM, and typically
 maps all platform RAM in a 1:1 relationship.

TASK_SIZE PAGE_OFFSET-1 Kernel module space
 Kernel modules inserted via insmod are
 placed here using dynamic mappings.

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

From ARMv7 Arch. Ref. manual: small page translation flow

17

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

MMU switching

 GDB remote server must supply architecture specific support

 This is currently the only arch specific constraint on gdbserver

 Very simple interface for ARM, but can be tricky on gbdserver side.

Remote specific command example (ST-Microconnect):

st cp15 c1 0 c0 0 read System Control Register

st cp15 c2 0 c0 0 read Translation Table Base Register 0

st cp15 c2 0 c0 0 0x%x write TTRB0

st cp15 c13 0 c0 1 read Context ID register (ASID)

st cp15 c13 0 c0 1 0x%x write ASID

Example with Qemu:

Qqemu.st.mrc.c2_base0;%x

Qqemu.st.mrc.c13_context;%x

18

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

Hooking the init and release steps of a module’s life

 Init sections are freed after module loading completed

 In order to debug in module_init section: hooking required

 Detect module unload with breakpoint in

 module_arch_cleanup

 Setting a pending breakpoint triggers these hooks,

 Disabled by default to avoid heavy debug-mode activity when
loading series of modules

19

sys_load_module

load_module

module_finalize(*hdr, *sechdr, *mod)

• Hit breakpoint here

• read “*mod” = ptr to the module
• retrieve module info,

• resolve symbols

• solib_add

• set a breakpoint in init routine

ADCS#: ###### Revised: 23 September, 2010

Userland support

Debugging userland with the Linux Kernel Debugger

 not so simple, not so sensible, but some comfort can be granted to
the user, like:

 translate VM addresses:

 pull process symbols, switch “main” and symbol space when
stepping, backtracing usermode

 Setting a breakpoint in kernel mode, then unwinding and stepping
up to usermode is not so hard to achieve.

 20

task_struct.active_mm.pgd
task_struct.active_mm.id

ADCS#: ###### Revised: 23 September, 2010

Android support

About Google’s NDK

 Fine for attaching to a running Linux process

 Used not to work for regular cross-debugging (fixed?)

We had to provide users with means to debug the early init of a
newly spawned Dalvik VM

New gdb commands

 wait_exe_uid execute canned commands when hitting
 do_fork for an executable with the given UID

 wait_android_vm execute canned commands when hitting
 do_fork for an executable with UID in the

 range matching Android VMs (AID_APP)

21

ADCS#: ###### Revised: 23 September, 2010

Project Status and Maturity

Project Maturity

 Historically based on GDB branch for ST40(sh4)/ST200 cross
debuggers, many ST-internal contributors accountable for credit:

 Mark Phillips, Miguel Santana, Chris Smith, Frederic Riss, ...

 Widely deployed internally through Eclipse integration
(STWorkbench)

 Ongoing development for ARM MPSoC targets

Possible improvements

 Leverage contribution of GDB as of 7.x: many contributions in the
fields of scheduling control and multiple address and symbol space
management.

22

ADCS#: ###### Revised: 23 September, 2010

About contribution and prospective

Feedback

 We will consider the possibility to contribute this work upon positive
feedback from the community.

Prospective work

 Could be a basis to develop “Debuggers for Linux Cluster On Chip”
ongoing PhD in this field (kevin pouget at st dot com)

Benefits of contribution

 in mainstream GDB: encourage better core/device abstraction

 in mainstream Kernel: encourage keeping access to data used for
debug agnostic to kernel version and CONFIG_XXX and “JTAG
friendly”

 In JTAG probe software: support GDB-remote, present a hardware
thread for each core

23

ADCS#: ###### Revised: 23 September, 2010

A word of conclusion

Suggestions for JTAG probe software implementers

 act like a remote gdbserver, handle sw/hw breakpoints

 Standardize “remote” commands for architecture specific coprocessor
settings (typically cp15 operations on ARM)

 Expose one hardware thread per core

 Expose the implementation choices for SMP (whether all-block or
not) thanks to remote target (gdb target abstraction).

Linux Kernel

so far we cope with most versions and CONFIG variants,

but would be nice if :

 Used offsets and kernel symbols not moving too often

 Fields needed for Linux-awareness kept contiguous to optimize
transfers and limit intrusiveness.

24

ADCS#: ###### Revised: 23 September, 2010

25

