
ADCS#: ####### Revised: 23 September, 2010

Efficient JTAG-based Linux

kernel debugging

Embedded Linux Conference Europe - 2011

ADCS#: ###### Revised: 23 September, 2010

Rationale

 Embedded Linux in Devices: sustained growth for
many years and more recently increasing success of System

Middleware for Devices based on Linux, especially Google Android.

 The number of MPSoC running embedded Linux is
increasing and accordingly the software architecture is adapting,

getting scalable and parallel. Now taken into account by chip
vendors: cross triggering and system-wide tracing support IPs.

 STMicroelectronics Internal requirements and
historical facts The software for multimedia appliances (set-

top-boxes) is part of the reference design we provide. We needed
to port a scalable Multimedia Streaming and Processing Framework
from an RTOS to Linux by the time when mastering wake-up
latency would mean doing kernel streaming (or using a RT co-
kernel…)

1

ADCS#: ###### Revised: 23 September, 2010

Multi-core debugging and tracing

2

SoC

DBU

Cortex-A9

Dual Core

 companion

processor

 companion

processor

 companion

processor

DAP

Coresight

Instruction

Trace

STM

TD

I

TDO

T
Y

P
E

-H

TD

I

TDO

TD

I

TDO

TD

I

TDO

J
T
A

G
 c

h
a

in

JTAG

STM

Trace

port

System

Trace

Chip vendors have taken into account the need for MP-specific
debug and tracing infrastructure.

ADCS#: ###### Revised: 23 September, 2010

Debugger

Simple real word use case

 Set-top-box with internet browser: debug an erratic

situation in a driver rooted in userland.

3

webkit
internet content rendering

libOpenGl

mali_ioctl()

sys_ioctl()

breakpoint

Frame of interest

U-mode unwinding

Syscall unwinding

K-mode unwinding

ADCS#: ###### Revised: 23 September, 2010

Simple real word use case

(gdb) b sys_open

Breakpoint 4 at 0x8006dd40: file fs/open.c, line 1060.

(gdb) c

Continuing.

[Switching to ls]

Breakpoint 4, sys_open (filename=0x2956bc9c "/etc/ld.so.cache", flags=0, mode=1) at fs/open.c:1060

1060 ret = do_sys_open(AT_FDCWD, filename, flags, mode);

(gdb) bt

#0 sys_open (filename=0x2956bc9c "/etc/ld.so.cache", flags=0, mode=1) at fs/open.c:1060

#1 0x80008920 in syscall_call ()

#2 0x29568244 in open ()

…

#11 0x2955bb78 in _dl_start_final (arg=0x7b82fd80) at rtld.c:328 usermode unwinding

#12 _dl_start (arg=0x7b82fd80) at rtld.c:554

#13 0x295588cc in _start ()

4

ADCS#: ###### Revised: 23 September, 2010

Kernel debuggers for devices

KGDB

 Requires sufficient support for RS-232 or Ethernet

 Won’t remain in production / flashed kernels

 Requires kernel co-operation, less usable for serious crashes

JTAG, the bold way

 Find a JTAG probe that has compatibility with gdb-remote protocol

 Debug vmlinux as a baremachine “hello word” application

 Some of good tips and tricks on the web:

 www.elinux.org/DebuggingTheLinuxKernelUsingGdb

 SMP: if you are lucky, the JTAG probe “gdbserver” exposes one
thread per core in gdb.

5

http://www.elinux.org/DebuggingTheLinuxKernelUsingGdb

ADCS#: ###### Revised: 23 September, 2010

Kernel debuggers for devices, fancier

Commercial Solutions

 Must be very well defined in terms of supported targets, software
versions and debugging hardware because support and service can
be part of the package.

JTAG, the presented way: implement Linux Awareness

 Find a JTAG probe compatible with gdb remote protocol

 Handle kernel modules the same way as shared libraries, with
init/release hooking.

 Deal with memory translation and MMU settings, as the kernel will
not do it for us

 Expose Linux tasks as selectable threads in gdb

 Allow stepping any of the scheduled task (one per core)

 Allow backtracing

 Allow breakpointing

6

ADCS#: ###### Revised: 23 September, 2010

Linux Awareness Components Layout

7

GDB

Linux

Awareness

Remote

Exec

None

GDB Remote-

compatible

probe
tcp

vmlinux

jtag

(gdb) maint print target-stack

The current target stack is:

 - linux-aware (Linux-aware target interface)

 - stmc-remote (STMC remote target in gdb-specific protocol)

 - exec (Local exec file)

 - None (None)

L/A is a self contained extension, compliant with GDB target model!

host

target

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks to gdb threads

8

Purpose

 Map anything that has a task_struct to a thread for gdb

 Be able to select this thread through usual gdb commands and

 get the backtrace

 list the sources matching a frame, resolve the symbols

 set breakpoints, stepi/nexti, step/next, finish, return...

Howto

 Enumeration walk the kernel linked lists of task_struct

 Housekeeping track process creation and deletion

 Distinguish scheduled ones (stepping allowed) from non-scheduled
ones (stepping not allowed)

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks to gdb threads

9

Minimal data needed for Linux process housekeeping:

 task_struct.comm executable command string

 task_struct.pid Process ID.

 task_struct.tgid Thread Group ID

 task_struct.mm tells whether it is an anonymous context or not

 task_struct.active_mm tells the actual page dir. used in this context

Constraint: accessing a remote target through JTAG

 GDB internal APIs and good practices encourage dynamic typing:
types (size, endianness) are provided by the target “object”

 But accessing a remote hardware: better read a few big chunks of
data than many individual structure fields !

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks to gdb threads

10

Populating the process list

 Flat exploration: like for_each_process in sched.h

tasks.p

tasks.n next

prev

next

prev

init_task

 Works, but discovery of tasks done in creation order, while
we want to regroup the threads of a process...

 other “swappers” (SMP case) not reachable this way

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks to gdb threads

11

Populating the process list

 Alternate exploration:

 Other “swappers”: added by default, one per h/w thread reported by

underlying remote target. Reachable through the runqueues “idle” field.

thread_g.p

thread_g.n next

prev

next

prev

siblings.p

siblings.n next

prev

next

prev

children.n

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks: housekeeping

12

struct pid_namespace init_pid_ns = {
 .kref = {
 .refcount = ATOMIC_INIT(2),
 },
 .pidmap = {
 [0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 },
 .last_pid = 0,
 .level = 0,
 .child_reaper = &init_task,
};

Find out when to rebuild the Linux task list

 done when the Linux-Awareness target processes an
inferior event: happens very often (stepping) and must be
optimized!

 breakpointing do_fork / do_exit is too intrusive.

 pid.c

 exit.c

$>nm vmlinux | grep process_count

c0021280 T per_cpu__process_counts

__get_cpu_var(process_counts--)

ADCS#: ###### Revised: 23 September, 2010

Mapping Linux tasks

13

Accessing the per-cpu variables in GDB

 Fairly simple, as of today we only need:

• __per_cpu_offset offset of each CPU’s per_cpu page

• process_count

• per_cpu__runqueues (or occasionally runqueues)

• rq->idle

• rq->curr currently scheduled task

Finding the currently scheduled task

 “current = sp & ~(THREAD_SIZE-1)”: this won’t work when

putting the target in debug mode while the core is running
a usermode code page.

 We need to check rq->curr.

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

Main features

 Allow init/exit debugging without specific kernel code.

 Resolve path to modules.dep and pull symbols automatically.

 Reuse the solib infrastructure in gdb

GDB solib callbacks

 soops_bfd_open

 soops_relocate_section_addresses resolving and “linking” sections

 soops_open_symbol_file_object

 soops_special_symbol_handling related to manual symbol-loading

 soops_current_sos modules enumeration

 soops_in_dynsym_resolve_code hide the TLB-miss handler when

 stepping through a VM code page

14

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

Building the modules list

 Usual kernel list starting with symbol “modules”

 For each module we read a block of RAM to gather the name…

 and info needed to properly handle the section layout

.init .module_init .module_core .init_size .core_size .init_text_size

.init_text_size .core_text_size .core_text_size

 Hoping they won’t change offset too much in struct module!

15

list.n next next modules

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

Virtual memory handling

 Architecture specific part (arm/memory.txt)!

 Accessing modules code pages requires memory translation.

 For pages between TASK_SIZE and PAGE_OFFSET_1 we set

 pdg = swapper_pg_dir + 8* (addr >> PGDIR_SHIFT)

 Cope with physical memory offset: pdg += phys_offset

 We read phys_offset from: meminfo.bank[0].start

16

PAGE_OFFSET high_memory-1 Kernel direct-mapped RAM region.
 This maps the platforms RAM, and typically
 maps all platform RAM in a 1:1 relationship.

TASK_SIZE PAGE_OFFSET-1 Kernel module space
 Kernel modules inserted via insmod are
 placed here using dynamic mappings.

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

From ARMv7 Arch. Ref. manual: small page translation flow

17

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

MMU switching

 GDB remote server must supply architecture specific support

 This is currently the only arch specific constraint on gdbserver

 Very simple interface for ARM, but can be tricky on gbdserver side.

Remote specific command example (ST-Microconnect):

st cp15 c1 0 c0 0 read System Control Register

st cp15 c2 0 c0 0 read Translation Table Base Register 0

st cp15 c2 0 c0 0 0x%x write TTRB0

st cp15 c13 0 c0 1 read Context ID register (ASID)

st cp15 c13 0 c0 1 0x%x write ASID

Example with Qemu:

Qqemu.st.mrc.c2_base0;%x

Qqemu.st.mrc.c13_context;%x

18

ADCS#: ###### Revised: 23 September, 2010

Kernel Module Debugging

Hooking the init and release steps of a module’s life

 Init sections are freed after module loading completed

 In order to debug in module_init section: hooking required

 Detect module unload with breakpoint in

 module_arch_cleanup

 Setting a pending breakpoint triggers these hooks,

 Disabled by default to avoid heavy debug-mode activity when
loading series of modules

19

sys_load_module

load_module

module_finalize(*hdr, *sechdr, *mod)

• Hit breakpoint here

• read “*mod” = ptr to the module
• retrieve module info,

• resolve symbols

• solib_add

• set a breakpoint in init routine

ADCS#: ###### Revised: 23 September, 2010

Userland support

Debugging userland with the Linux Kernel Debugger

 not so simple, not so sensible, but some comfort can be granted to
the user, like:

 translate VM addresses:

 pull process symbols, switch “main” and symbol space when
stepping, backtracing usermode

 Setting a breakpoint in kernel mode, then unwinding and stepping
up to usermode is not so hard to achieve.

 20

task_struct.active_mm.pgd
task_struct.active_mm.id

ADCS#: ###### Revised: 23 September, 2010

Android support

About Google’s NDK

 Fine for attaching to a running Linux process

 Used not to work for regular cross-debugging (fixed?)

We had to provide users with means to debug the early init of a
newly spawned Dalvik VM

New gdb commands

 wait_exe_uid execute canned commands when hitting
 do_fork for an executable with the given UID

 wait_android_vm execute canned commands when hitting
 do_fork for an executable with UID in the

 range matching Android VMs (AID_APP)

21

ADCS#: ###### Revised: 23 September, 2010

Project Status and Maturity

Project Maturity

 Historically based on GDB branch for ST40(sh4)/ST200 cross
debuggers, many ST-internal contributors accountable for credit:

 Mark Phillips, Miguel Santana, Chris Smith, Frederic Riss, ...

 Widely deployed internally through Eclipse integration
(STWorkbench)

 Ongoing development for ARM MPSoC targets

Possible improvements

 Leverage contribution of GDB as of 7.x: many contributions in the
fields of scheduling control and multiple address and symbol space
management.

22

ADCS#: ###### Revised: 23 September, 2010

About contribution and prospective

Feedback

 We will consider the possibility to contribute this work upon positive
feedback from the community.

Prospective work

 Could be a basis to develop “Debuggers for Linux Cluster On Chip”
ongoing PhD in this field (kevin pouget at st dot com)

Benefits of contribution

 in mainstream GDB: encourage better core/device abstraction

 in mainstream Kernel: encourage keeping access to data used for
debug agnostic to kernel version and CONFIG_XXX and “JTAG
friendly”

 In JTAG probe software: support GDB-remote, present a hardware
thread for each core

23

ADCS#: ###### Revised: 23 September, 2010

A word of conclusion

Suggestions for JTAG probe software implementers

 act like a remote gdbserver, handle sw/hw breakpoints

 Standardize “remote” commands for architecture specific coprocessor
settings (typically cp15 operations on ARM)

 Expose one hardware thread per core

 Expose the implementation choices for SMP (whether all-block or
not) thanks to remote target (gdb target abstraction).

Linux Kernel

so far we cope with most versions and CONFIG variants,

but would be nice if :

 Used offsets and kernel symbols not moving too often

 Fields needed for Linux-awareness kept contiguous to optimize
transfers and limit intrusiveness.

24

ADCS#: ###### Revised: 23 September, 2010

25

