
Jesus Sanchez-Palencia

The Road Towards a
Linux TSN Infrastructure

Intel, the Intel logo, Intel Quark and Intel® Ethernet Controller i210 Series are trademarks of Intel Corporation in the U.S.
and/or other countries. *Other names and brands may be claimed as the property of others.

© Intel Corporation

© Intel Corporation

3/14/18 2

About me
• Software Engineer at Intel (~5 years)

○ Open Source Technology Center (OTC)

• Currently: drivers and kernel interfaces for TSN
○ Linux Network Stack

• Background
○ Intel Quark Microcontrollers SW stack (QMSI)
○ Embedded OSes: Zephyr and Contiki, Android, Maemo
○ Web Rendering Engines (WebKit, Crosswalk)
○ Qt Framework

© Intel Corporation

33/14/18

Objectives
• Provide a (very) brief introduction to Time-Sensitive Networking
• Present the current upstream TSN SW architecture
• Discuss the challenges ahead

© Intel Corporation

43/14/18

Objectives
• Provide a (very) brief introduction to Time-Sensitive Networking
• Present the current upstream TSN SW architecture
• Discuss the challenges ahead

© Intel Corporation

LANs and the Internet
• Common model based on Internet Protocols and the IEEE 802 architecture.
• Mode of operation is best-effort

○ as in quickest
○ Metrics are all based on average (i.e. delay, speed)

• Not suitable for use cases that require high / known availability
○ like circuit switching networks
○ or Fieldbuses for control networks

■ operational network (OT) != information network (IT)
■ e.g.: CAN*, EtherCAT*, Profibus*, Profinet*, …

● lack of interoperability

53/14/18

© Intel Corporation

What is Time-Sensitive Networking?
• Set of evolving standards developed by IEEE to allow for time-sensitive

traffic on Ethernet based LANs.
○ started from Audio/Video Bridging (AVB)
○ allows for OT and IT traffic to co-exist

• Provides bounded worst-case latency
○ as in deterministic
○ determinism is prioritized over throughput

• Standards are mostly developed as extensions to 802.1Q
○ Virtual LANs (vlans) and QoS

• AVNU Alliance*
○ Interoperability

• Targets different segments
■ e.g.: Pro A/V, Industrial Control, Automotive systems

63/14/18

© Intel Corporation

TSN: Example

73/14/18

• Infotainment
○ multiple screens
○ multiple speakers

■ video + audio synchronized
○ noise reduction?

■ multiple mics
• Control

○ multiple sensors and actuators
• Why TSN?

○ Ethernet is cheap.
○ Cabling is one of the most

expensive components in a car.
• Same network?

○ Theoretically, yes.

© Intel Corporation

• Mechanisms:
○ Time Sync

■ 802.1AS
○ Traffic identification

■ VLAN tags
○ Resource allocation
○ Traffic shaping / scheduling

• Network Config:
○ 802.1Qcc
○ Dynamic or static

■ e.g.: SRP
○ Distributed or centralized

END
STATION

TSN: Theory of Operation

Best Effort

TSN capable

VLAN A

SWITCH

END
STATION

END
STATION END

STATION

END
STATION

END
STATION

TSN
SWITCH

83/14/18

TSN
SWITCH

Physicist

© Intel Corporation

TSN: Traffic Shapers
• TSN applications have different requirements

○ Reserved Bandwidth
○ Strict cycles: scheduled Tx

• 802.1Qav: Credit-based shaper (CBS)
○ per-queue bounded bandwidth
○ “transmit all packets from this traffic class at X kbps”

• Time-based Scheduling (TBS)
○ per-packet Tx time
○ “transmit this packet at timestamp 152034537600000000 ns”
○ not earlier than or not later than?

• 802.1Qbv: Enhancements to Scheduled Traffic
○ per-port queues schedule
○ “execute the Tx algorithm on queue 0 every 100us for 20us, on 1 every 240us for 30us”

• 802.1Qbu, 802.1Qci, ...

93/14/18

© Intel Corporation

“Talker” application
a. Enable Multiqueue
b. Configure Queues (shapers)
c. Classify traffic

- steer to Tx queue
- allow network to identify it

d. Transmit

“Listener” application
a. Optionally: setup Rx filters

- i.e. VLAN priority, src and dst MAC
b. Receive

TSN on End Stations Primer TALKER APP INTERNET
MUSIC APP

SOCKET SOCKET

NET STACK

DRIVER

TX SELECTION TX SELECTION

PORT

GATE GATEGATE
SCHEDULE

Userspace

Kernel

N.I.C.

NETWORK

TX
QUEUE

ø
TX
QUEUE
N

Best effort traffic

TSN traffic

END
STATION

Talker

103/14/18

...

© Intel Corporation

113/14/18

Objectives
• Provide a (very) brief introduction to Time-Sensitive Networking
• Present the current upstream TSN SW architecture
• Discuss the challenges ahead

© Intel Corporation

TSN SW - Previous Attempts
• OpenAVB - Eric Mann’s (Intel)

○ bypasses kernel network stack
○ forked driver: igb_avb
○ config and data paths: libigb
○ Tx Queues exposed directly to the userspace

• RFCs on netdev from Henrik Austad (CISCO*)
○ media centric (AVB)
○ bundled up as a TSN driver

■ ConfigFS based interface
○ ALSA shim for audio streaming

• Driver-specific interfaces on upstream
○ stmmac* and (maybe) others: devicetree as a config interface for shapers

• Downsides: kernel bypassing, hw-dependent, monolithic solutions

123/14/18

© Intel Corporation

Traffic Control on Linux
• Provides

○ Shaping / Scheduling (Tx)
○ Policing (Rx)
○ Dropping

• Queueing Disciplines, Classes and Filters
• Qdiscs

○ Kernel Packet buffer
■ Sits ‘between’ protocol families and netdevice driver

○ Control when / how packets are transmitted
○ Every interface has a default root qdisc attached

■ Qdiscs can expose classes
○ Qdiscs can “offload” work to hardware

$ tc -g qdisc show dev wlp58s0
qdisc mq 0: root
qdisc fq_codel 0: parent :4 (...)
qdisc fq_codel 0: parent :3 (...)
qdisc fq_codel 0: parent :2 (...)
qdisc fq_codel 0: parent :1 (...)

$ tc -g class show dev wlp58s0
+---(:4) mq
+---(:3) mq
+---(:2) mq
+---(:1) mq

133/14/18

© Intel Corporation

Config interface: Multiqueue
• mqprio qdisc: Multiqueue priority

○ It “exposes” HW queues as classes, allowing for other inner qdiscs
to be attached.

○ Maps priorities to traffic classes to HW queues.

• Example: 3 traffic classes
○ prio 3 -> tc 0 -> queue 0 (8001:1)
○ prio 2 -> tc 1 -> queue 1 (8001:2)
○ other -> tc 2 -> queues 2 (8001:3) and 3 (8001:4)

143/14/18

$ tc qdisc replace dev enp2s0 \
 parent root mqprio num_tc 3 \
 map 2 2 1 0 2 2 2 2 (...) \
 queues 1@0 1@1 2@2 hw 0

$ tc -g class show dev enp2s0
+---(8001:ffe2) mqprio
| +---(8001:3) mqprio
| +---(8001:4) mqprio
|
+---(8001:ffe1) mqprio
| +---(8001:2) mqprio
|
+---(8001:ffe0) mqprio
 +---(8001:1) mqprio

© Intel Corporation

Config interface: Credit-based shaper
• For credit-based shaping (802.1Qav) we developed

the cbs qdisc.
○ Available from kernel 4.15.

■ debuted with Intel i210 support only, but more to follow.
○ Provides both HW offloading and SW fallback.
○ Config parameters derived directly from Annex L of IEEE 802.1Q.
○ Remember: CBS is bandwidth-centric.

• Example: configure CBS for traffic class 1 (priority 2)

153/14/18

$ tc qdisc replace dev enp2s0 \
 parent 8001:2 cbs \
 locredit -1470 hicredit 30 \
 sendslope -980000 \
 idleslope 20000 offload 1

$ tc -g qdisc show dev enp2s0

qdisc mqprio 8001: root tc 3 (...) \
queues:(0:0) (1:1) (2:3) \
(...)

qdisc fq_codel 0: parent 8001:1
limit 10240p \
(...)

qdisc cbs 8002: parent 8001:2 \
hicredit 30 locredit -1470 \
sendslope -980000 idleslope \
20000 offload 1

© Intel Corporation

Config interface: Time-based Sched.

163/14/18

• For time-based scheduling, we are developing the tbs
qdisc and the SO_TXTIME socket option.

○ Co-developing with Richard Cochran (linuxptp maintainer).
○ Provides both HW offloading and SW fallback.
○ Trending well, currently on its RFC v3

■ https://patchwork.ozlabs.org/cover/882342/
■ debuted with Intel i210 support only, but more to follow.

• tbs qdisc can:
○ hold packets until their TxTime minus a configurable delta factor
○ sort packets based on their TxTime

■ optional, and only before they are sent to the device queue
• tbs is time-centric

■ Requires a per-packet timestamp.

• Example: configure TBS for traffic class 0 (priority 3)

$ tc qdisc replace dev enp2s0 \
parent 8001:1 tbs \
clockid CLOCK_REALTIME \
delta 150000 sorting \
offload

$ tc -g qdisc show dev enp2s0

(...)

qdisc tbs 8003: parent 8001:1 \
clockid CLOCK_REALTIME delta \
150000 offload on \
sorting on

qdisc cbs 8002: parent 8001:2 \
hicredit 30 \
(...)

https://patchwork.ozlabs.org/cover/882342/

© Intel Corporation

Data path: Socket interface

173/14/18

(...)
clock_gettime(CLOCK_REALTIME, &ts);
__u64 txtime = ts.tv_sec * 1000000000ULL

 + ts.tv_nsec;

cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_TXTIME;
cmsg->cmsg_len = CMSG_LEN(sizeof(__u64));
*((__u64 *) CMSG_DATA(cmsg)) = txtime;

cmsg = CMSG_NXTHDR(&msg, cmsg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_DROP_IF_LATE;
cmsg->cmsg_len =
CMSG_LEN(sizeof(uint8_t));
*((uint8_t *) CMSG_DATA(cmsg)) = 1;

(...)

const int on = 1;
setsockopt(fd, SOL_SOCKET,

SO_TXTIME, &on, sizeof(on))

• We use regular sockets for transmitting data.
• TBS

○ a new socket option (SO_TXTIME) is used for enabling the feature
for a given socket.

○ A cmsg header is used for setting a per-packet txtime, and a
drop_if_late flag.

■ reference clockid_t will become a socket option argument

© Intel Corporation

Data path: Socket interface
• Classifying traffic:

○ The socket option SO_PRIORITY is used to flag all packets with an specific priority.
■ Preferred method, but iptables or net_prio cgroup can be used.

○ The priority is later used as the PCP field of the VLAN tag of the ethernet header.
○ Steers all traffic from the socket into the correct HW Tx queue.

■ Remember: we have setup a mapping for that with the mqprio qdisc.

183/14/18

© Intel Corporation

Results - TxTime Based Scheduling
 SW

| | plain kernel @ 1ms |
|-----------------+--------------------+
| min (ns): | +4.820000e+02 |
| max (ns): | +9.999300e+05 | <- ~999 us
| pk-pk: | +9.994480e+05 | <- ~999 us
mean (ns):	+3.464421e+04
stddev:	+1.305947e+05
count:	600000

193/14/18

 TBS

| | tbs SW @ 1ms | tbs HW @ 1ms | tbs HW @ 250 us |
|-----------------+-------------------+----------------+-----------------|
| min (ns): | +1.510000e+02 | +4.420000e+02 | +4.260000e+02 |
| max (ns): | +9.977030e+05 | +5.060000e+02 | +5.060000e+02 | <- 506 ns
| pk-pk: | +9.975520e+05 | +6.400000e+01 | +8.000000e+01 | <- 80 ns
mean (ns):	+1.416511e+04	+4.687228e+02	+4.600596e+02
stddev:	+5.750639e+04	+9.868569e+00	+1.287626e+01
count:	600000	600000	2400000
tbs delta (ns):	130000	130000	130000

• DUT: i5-7600 CPU @ 3.50GHz, kernel 4.16.0-rc2+ with about 50 usec
maximum latency under cyclictest.

• ptp4l + phc2sys
• packet size: 322 bytes all headers included

© Intel Corporation

What about the userspace?
• OpenAVNU

○ Evolution of OpenAVB, maintained by the AVNU Alliance members
○ Provides daemons, libs, examples, frameworks

■ gPTPd: 802.1AS
■ MRPd: SRP daemon

○ Mostly focused on the Pro A/V domain
○ Recent contribution from Intel: libavtp

■ Provides packetization for applications that use AVTP as a transport
■ https://github.com/AVnu/OpenAvnu/tree/open-avb-next/lib/libavtp

• linuxptp
○ ptp4l: Precision Time Protocol implementation for Linux
○ phc2sys: Synchronizes the PTP Hardware Clock to the System Clock

203/14/18

https://github.com/AVnu/OpenAvnu/tree/open-avb-next/lib/libavtp

© Intel Corporation

213/14/18

Objectives
• Provide a (very) brief introduction to Time-Sensitive Networking
• Present the current upstream TSN SW architecture
• Discuss the challenges ahead

© Intel Corporation

Config interfaces: 802.1Qbv and 802.1Qbu
• Qbv: Enhancements to Scheduled Traffic
• Qbu: Frame Preemption
• We’ve shared ideas for a new qdisc-based interface before: ‘taprio’.

○ A time-aware version of mqprio.
○ Part of the CBS RFC v1: https://patchwork.ozlabs.org/cover/808504/
○ Push-back: there were no NICs for end stations with support for these standards.
○ Providing a SW fallback is required, so we may re-consider an ethtool based interface instead.

• TBS could be used, but that requires a scheduler for converting the per-port
schedule from Qbv into a per-packet txtime.

Intel Confidential3/14/18 22

https://patchwork.ozlabs.org/cover/808504/

© Intel Corporation

Data path: Looking ahead
• Linux network stack is *very good* for throughput.

○ TSN will require more: bounded low latency

• XDP
○ eXpress Data Path

■ High performance data path for Rx.
○ Does not bypass the kernel, but avoids allocation of skbuffs.
○ https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
○ https://www.iovisor.org/technology/xdp

• AF_PACKET_V4 -> AF_XDP
○ New socket family aiming to improve throughput / latency by reusing XDP hooks.

■ Zerocopy will be finally allowed, but only with driver support.
○ https://lwn.net/Articles/737947/
○ https://patchwork.ozlabs.org/cover/867937/

Intel Confidential3/14/18 23

https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://www.iovisor.org/technology/xdp
https://lwn.net/Articles/737947/
https://patchwork.ozlabs.org/cover/867937/

© Intel Corporation

Wrap up

24

• TSN aims to provide bounded latency on Ethernet based LANs.
• SW interfaces for Linux are starting to become available upstream starting

with the cbs and tbs qdiscs.
• Future work aims to address other traffic shapers (802.1Qbv / Qbu).
• Low latency is (probably) an issue. There are efforts trying to reduce the

bounded worst-case latency of the Linux network stack: AF_XDP.
• Userspace building blocks are also gaining traction.

○ OpenAVNU is becoming the consolidator of TSN SW components for userspace.

• Zephyr will have TSN support soon!

3/14/18

© Intel Corporation

Call to Action
• Enable support on your upstream drivers.
• Have use cases? Engage on the netdev discussions!
• Have TSN products? Help us testing by using the upstream interfaces.
• Contribute code and bug-fixes!

253/14/18

© Intel Corporation

More References
• Mann’s Plumbers 2012 talk:

https://linuxplumbers.ubicast.tv/videos/linux-network-enabling-requirements-for-audiovideo-bridgin
g-avb/

• Austad’s TSN driver RFC v2: https://lkml.org/lkml/2016/12/16/453
• Austad’s ELC 2017.2 Presentation: https://www.youtube.com/watch?v=oxURD2rr4Y4
• CBS v9: https://patchwork.ozlabs.org/cover/826678/
• TBS RFC v2: https://patchwork.ozlabs.org/cover/862639/
• mqprio man page: http://man7.org/linux/man-pages/man8/tc-mqprio.8.html

• cbs man page: http://man7.org/linux/man-pages/man8/tc-cbs.8.html

• OpenAVNU: https://github.com/AVnu/OpenAvnu

263/14/18

https://linuxplumbers.ubicast.tv/videos/linux-network-enabling-requirements-for-audiovideo-bridging-avb/
https://linuxplumbers.ubicast.tv/videos/linux-network-enabling-requirements-for-audiovideo-bridging-avb/
https://lkml.org/lkml/2016/12/16/453
https://www.youtube.com/watch?v=oxURD2rr4Y4
https://patchwork.ozlabs.org/cover/826678/
https://patchwork.ozlabs.org/cover/862639/
http://man7.org/linux/man-pages/man8/tc-mqprio.8.html
http://man7.org/linux/man-pages/man8/tc-cbs.8.html
https://github.com/AVnu/OpenAvnu

Q/A
Obrigado!

jesus.sanchez-palencia@intel.com

© Intel Corporation

