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About me
• Software Engineer at Intel (~5 years)

○ Open Source Technology Center (OTC)

• Currently: drivers and kernel interfaces for TSN
○ Linux Network Stack

• Background
○ Intel Quark Microcontrollers SW stack (QMSI)
○ Embedded OSes: Zephyr and Contiki, Android, Maemo
○ Web Rendering Engines (WebKit, Crosswalk)
○ Qt Framework
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Objectives
• Provide a (very) brief introduction to Time-Sensitive Networking
• Present the current upstream TSN SW architecture
• Discuss the challenges ahead
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LANs and the Internet
• Common model based on Internet Protocols and the IEEE 802 architecture.
• Mode of operation is best-effort

○ as in quickest
○ Metrics are all based on average (i.e. delay, speed)

• Not suitable for use cases that require high / known availability
○ like circuit switching networks
○ or Fieldbuses for control networks

■ operational network (OT) != information network (IT)
■ e.g.: CAN*, EtherCAT*, Profibus*, Profinet*, …

● lack of interoperability
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What is Time-Sensitive Networking?
• Set of evolving standards developed by IEEE to allow for time-sensitive 

traffic on Ethernet based LANs.
○ started from Audio/Video Bridging (AVB)
○ allows for OT and IT traffic to co-exist

• Provides bounded worst-case latency
○ as in deterministic
○ determinism is prioritized over throughput

• Standards are mostly developed as extensions to 802.1Q
○ Virtual LANs (vlans) and QoS

• AVNU Alliance*
○ Interoperability

• Targets different segments
■ e.g.: Pro A/V, Industrial Control, Automotive systems

63/14/18



© Intel Corporation

TSN: Example
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• Infotainment
○ multiple screens
○ multiple speakers

■ video + audio synchronized
○ noise reduction?

■ multiple mics
• Control

○ multiple sensors and actuators
• Why TSN?

○ Ethernet is cheap.
○ Cabling is one of the most 

expensive components in a car.
• Same network?

○ Theoretically, yes.
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• Mechanisms:
○ Time Sync

■ 802.1AS
○ Traffic identification

■ VLAN tags
○ Resource allocation
○ Traffic shaping / scheduling

• Network Config:
○ 802.1Qcc
○ Dynamic or static

■ e.g.: SRP
○ Distributed or centralized
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TSN: Traffic Shapers
• TSN applications have different requirements

○ Reserved Bandwidth
○ Strict cycles: scheduled Tx

• 802.1Qav: Credit-based shaper (CBS)
○ per-queue bounded bandwidth
○ “transmit all packets from this traffic class at X kbps”

• Time-based Scheduling (TBS)
○ per-packet Tx time
○ “transmit this packet at timestamp 152034537600000000 ns”
○ not earlier than or not later than?

• 802.1Qbv: Enhancements to Scheduled Traffic
○ per-port queues schedule
○ “execute the Tx algorithm on queue 0 every 100us for 20us, on 1 every 240us for 30us”

• 802.1Qbu, 802.1Qci, ...
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“Talker” application
a. Enable Multiqueue
b. Configure Queues (shapers)
c. Classify traffic

- steer to Tx queue
- allow network to identify it

d. Transmit

“Listener” application
a. Optionally: setup Rx filters

- i.e. VLAN priority, src and dst MAC
b. Receive
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Objectives
• Provide a (very) brief introduction to Time-Sensitive Networking
• Present the current upstream TSN SW architecture
• Discuss the challenges ahead
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TSN SW - Previous Attempts
• OpenAVB - Eric Mann’s (Intel)

○ bypasses kernel network stack
○ forked driver: igb_avb
○ config and data paths: libigb
○ Tx Queues exposed directly to the userspace

• RFCs on netdev from Henrik Austad (CISCO*)
○ media centric (AVB)
○ bundled up as a TSN driver

■ ConfigFS based interface
○ ALSA shim for audio streaming

• Driver-specific interfaces on upstream
○ stmmac* and (maybe) others: devicetree as a config interface for shapers

• Downsides: kernel bypassing, hw-dependent, monolithic solutions

123/14/18



© Intel Corporation

Traffic Control on Linux
• Provides

○ Shaping / Scheduling (Tx)
○ Policing (Rx)
○ Dropping

• Queueing Disciplines, Classes and Filters 
• Qdiscs

○ Kernel Packet buffer
■ Sits ‘between’ protocol families and netdevice driver

○ Control when / how packets are transmitted
○ Every interface has a default root qdisc attached

■ Qdiscs can expose classes
○ Qdiscs can “offload” work to hardware

$ tc -g qdisc show dev wlp58s0                                                                                                                                      
qdisc mq 0: root 
qdisc fq_codel 0: parent :4   (...) 
qdisc fq_codel 0: parent :3   (...)
qdisc fq_codel 0: parent :2   (...)
qdisc fq_codel 0: parent :1   (...)

$ tc -g class show dev wlp58s0                                                                                                                         
+---(:4) mq 
+---(:3) mq 
+---(:2) mq 
+---(:1) mq 
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Config interface: Multiqueue
• mqprio qdisc: Multiqueue priority

○ It “exposes” HW queues as classes, allowing for other inner qdiscs 
to be attached.

○ Maps priorities to traffic classes to HW queues.

• Example: 3 traffic classes
○ prio 3 -> tc 0 -> queue 0 (8001:1)
○ prio 2 -> tc 1 -> queue 1 (8001:2)
○ other  -> tc 2 -> queues 2 (8001:3) and 3 (8001:4)
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$ tc qdisc replace dev enp2s0 \
  parent root mqprio num_tc 3 \
  map 2 2 1 0 2 2 2 2 (...)   \
  queues 1@0 1@1 2@2 hw 0

$ tc -g class show dev enp2s0
+---(8001:ffe2) mqprio
|    +---(8001:3) mqprio
|    +---(8001:4) mqprio
|
+---(8001:ffe1) mqprio
|    +---(8001:2) mqprio
|
+---(8001:ffe0) mqprio
     +---(8001:1) mqprio
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Config interface: Credit-based shaper
• For credit-based shaping (802.1Qav) we developed 

the cbs qdisc.
○ Available from kernel 4.15.

■ debuted with Intel i210 support only, but more to follow.
○ Provides both HW offloading and SW fallback.
○ Config parameters derived directly from Annex L of IEEE 802.1Q.
○ Remember: CBS is bandwidth-centric.

• Example: configure CBS for traffic class 1 (priority 2)
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$ tc qdisc replace dev enp2s0      \
     parent 8001:2 cbs             \
     locredit -1470 hicredit 30    \
     sendslope -980000             \
     idleslope 20000 offload 1

$ tc -g qdisc show dev enp2s0

qdisc mqprio 8001: root tc 3 (...) \
queues:(0:0) (1:1) (2:3)      \
(...)

qdisc fq_codel 0: parent 8001:1
limit 10240p                  \
(...)

qdisc cbs 8002: parent 8001:2      \
hicredit 30 locredit -1470    \
sendslope -980000 idleslope   \
20000 offload 1
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Config interface: Time-based Sched.
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• For time-based scheduling, we are developing the tbs 
qdisc and the SO_TXTIME socket option.

○ Co-developing with Richard Cochran (linuxptp maintainer).
○ Provides both HW offloading and SW fallback.
○ Trending well, currently on its RFC v3

■ https://patchwork.ozlabs.org/cover/882342/
■ debuted with Intel i210 support only, but more to follow.

• tbs qdisc can:
○ hold packets until their TxTime minus a configurable delta factor
○ sort packets based on their TxTime

■ optional, and only before they are sent to the device queue
• tbs is time-centric

■ Requires a per-packet timestamp.

• Example: configure TBS for traffic class 0 (priority 3)

$ tc qdisc replace dev enp2s0      \
parent 8001:1 tbs             \
clockid CLOCK_REALTIME        \
delta 150000 sorting          \
offload

$ tc -g qdisc show dev enp2s0

(...)

qdisc tbs 8003: parent 8001:1      \
clockid CLOCK_REALTIME delta  \
150000 offload on             \
sorting on

qdisc cbs 8002: parent 8001:2      \
hicredit 30                   \
(...)

 

https://patchwork.ozlabs.org/cover/882342/
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Data path: Socket interface
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(...)
clock_gettime(CLOCK_REALTIME, &ts);
__u64 txtime = ts.tv_sec * 1000000000ULL

    + ts.tv_nsec;

cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_TXTIME;
cmsg->cmsg_len = CMSG_LEN(sizeof(__u64));
*((__u64 *) CMSG_DATA(cmsg)) = txtime;

cmsg = CMSG_NXTHDR(&msg, cmsg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_DROP_IF_LATE;
cmsg->cmsg_len = 
CMSG_LEN(sizeof(uint8_t));
*((uint8_t *) CMSG_DATA(cmsg)) = 1;

(...)

const int on = 1;
setsockopt(fd, SOL_SOCKET,

SO_TXTIME, &on, sizeof(on))

 

• We use regular sockets for transmitting data.
• TBS

○ a new socket option (SO_TXTIME) is used for enabling the feature 
for a given socket.

○ A cmsg header is used for setting a per-packet txtime, and a 
drop_if_late flag.

■ reference clockid_t will become a socket option argument
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Data path: Socket interface
• Classifying traffic:

○ The socket option SO_PRIORITY is used to flag all packets with an specific priority.
■ Preferred method, but iptables or net_prio cgroup can be used.

○ The priority is later used as the PCP field of the VLAN tag of the ethernet header.
○ Steers all traffic from the socket into the correct HW Tx queue.

■ Remember: we have setup a mapping for that with the mqprio qdisc.
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Results - TxTime Based Scheduling
               SW

|                 | plain kernel @ 1ms |
|-----------------+--------------------+
| min (ns):       |    +4.820000e+02   |
| max (ns):       |    +9.999300e+05   | <- ~999 us
| pk-pk:          |    +9.994480e+05   | <- ~999 us
| mean (ns):      |    +3.464421e+04   |
| stddev:         |    +1.305947e+05   |
| count:          |           600000   |
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                                 TBS

|                 |    tbs SW @ 1ms   |  tbs HW @ 1ms  | tbs HW @ 250 us |
|-----------------+-------------------+----------------+-----------------|
| min (ns):       |    +1.510000e+02  |  +4.420000e+02 |   +4.260000e+02 |
| max (ns):       |    +9.977030e+05  |  +5.060000e+02 |   +5.060000e+02 | <- 506 ns
| pk-pk:          |    +9.975520e+05  |  +6.400000e+01 |   +8.000000e+01 | <- 80 ns
| mean (ns):      |    +1.416511e+04  |  +4.687228e+02 |   +4.600596e+02 |
| stddev:         |    +5.750639e+04  |  +9.868569e+00 |   +1.287626e+01 |
| count:          |           600000  |         600000 |         2400000 |
| tbs delta (ns): |           130000  |         130000 |          130000 |

• DUT: i5-7600 CPU @ 3.50GHz, kernel 4.16.0-rc2+ with about 50 usec 
maximum latency under cyclictest.

• ptp4l + phc2sys
• packet size: 322 bytes all headers included
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What about the userspace?
• OpenAVNU

○ Evolution of OpenAVB, maintained by the AVNU Alliance members
○ Provides daemons, libs, examples, frameworks

■ gPTPd: 802.1AS
■ MRPd: SRP daemon

○ Mostly focused on the Pro A/V domain
○ Recent contribution from Intel: libavtp

■ Provides packetization for applications that use AVTP as a transport
■ https://github.com/AVnu/OpenAvnu/tree/open-avb-next/lib/libavtp

• linuxptp
○ ptp4l: Precision Time Protocol implementation for Linux 
○ phc2sys: Synchronizes the PTP Hardware Clock to the System Clock

203/14/18

https://github.com/AVnu/OpenAvnu/tree/open-avb-next/lib/libavtp
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Config interfaces: 802.1Qbv and 802.1Qbu
• Qbv: Enhancements to Scheduled Traffic
• Qbu: Frame Preemption
• We’ve shared ideas for a new qdisc-based interface before: ‘taprio’.

○ A time-aware version of mqprio.
○ Part of the CBS RFC v1: https://patchwork.ozlabs.org/cover/808504/
○ Push-back: there were no NICs for end stations with support for these standards.
○ Providing a SW fallback is required, so we may re-consider an ethtool based interface instead.

• TBS could be used, but that requires a scheduler for converting the per-port 
schedule from Qbv into a per-packet txtime.
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Data path: Looking ahead
• Linux network stack is *very good* for throughput.

○ TSN will require more: bounded low latency

• XDP
○ eXpress Data Path

■ High performance data path for Rx.
○ Does not bypass the kernel, but avoids allocation of skbuffs.
○ https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
○ https://www.iovisor.org/technology/xdp

• AF_PACKET_V4   ->   AF_XDP
○ New socket family aiming to improve throughput / latency by reusing XDP hooks.

■ Zerocopy will be finally allowed, but only with driver support.
○ https://lwn.net/Articles/737947/
○ https://patchwork.ozlabs.org/cover/867937/
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Wrap up

24

• TSN aims to provide bounded latency on Ethernet based LANs.
• SW interfaces for Linux are starting to become available upstream starting 

with the cbs and tbs qdiscs.
• Future work aims to address other traffic shapers (802.1Qbv / Qbu).
• Low latency is (probably) an issue. There are efforts trying to reduce the 

bounded worst-case latency of the Linux network stack: AF_XDP.
• Userspace building blocks are also gaining traction.

○ OpenAVNU is becoming the consolidator of TSN SW components for userspace.

• Zephyr will have TSN support soon!

3/14/18
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Call to Action
• Enable support on your upstream drivers.
• Have use cases? Engage on the netdev discussions!
• Have TSN products? Help us testing by using the upstream interfaces.
• Contribute code and bug-fixes!
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More References
• Mann’s Plumbers 2012 talk: 

https://linuxplumbers.ubicast.tv/videos/linux-network-enabling-requirements-for-audiovideo-bridgin
g-avb/

• Austad’s TSN driver RFC v2: https://lkml.org/lkml/2016/12/16/453
• Austad’s ELC 2017.2 Presentation: https://www.youtube.com/watch?v=oxURD2rr4Y4
• CBS v9: https://patchwork.ozlabs.org/cover/826678/
• TBS RFC v2: https://patchwork.ozlabs.org/cover/862639/
• mqprio man page: http://man7.org/linux/man-pages/man8/tc-mqprio.8.html

• cbs man page: http://man7.org/linux/man-pages/man8/tc-cbs.8.html

• OpenAVNU: https://github.com/AVnu/OpenAvnu
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