
https://www.pengutronix.de

Lucas Stach – l.stach@pengutronix.de

graphics stack developer @ Pengutronix

Why are GPUs (not) fast

mailto:l.stach@pengutronix.de

 2/20

Magic?

Graphics Processing Units are magical go fast devices, right?

Well, no…

 3/20

Deep down

Mutlu, Onur & Ghose, Saugata & Gómez-Luna, Juan & Ausavarungnirun, Rachata. (2020). A Modern Primer on Processing in Memory.

Example:

DDR4 at 4000 MT/s
32 Bit Bus
20 ns access time

16 GB/s
bandwidth*delay = 320 Bytes

 4/20

Deep down (the memory lane)

How to avoid the memory bus looking like this?

Caches

t

t

 5/20

Throughput over latency

Filling a 2D grid of pixels
 Inherently parallel problem
 Latency matters only at the grid level

Spend HW resources on more, but less
sophisticated execution engines

 6/20

Throughput over latency

SIMT – single instruction multiple threads
 Multiple threads share one execution engine

If threads use more registers, lower number of
thread can be in flight

 Less opportunities to hide memory latency

shared register file

 7/20

GPU hardware

 Optimized for (ridiculously) parallel workloads

 Memory latency hiding

 Breaks down if problem isn’t parallelizable or individual
strands are too complex

 8/20

GPU drivers

Split between kernel and user mode

UAPI

kernel mode driver

User mode driver
MESA library

OpenGL, Vulkan, OpenCL, etc

 9/20

GPU drivers

 (Relatively) expensive submissions
to hardware

 User mode driver amortizes cost
via batching

 Reducing execution latency by
forcing job submission (glFlush,
vkQueueSubmit) increases cost
(driver overhead)

UAPI

kernel mode driver

User mode driver
MESA library

OpenGL, Vulkan,
OpenCL, etc

 10/20

GPU drivers

GPU drivers optimize for throughput by allowing the CPU to
get ahead of the GPU (pipelining)

GPU

CPU

job n

job n+1 job n+2

job n+1 job n+2

 11/20

GPU drivers

Synchronous waits for results (job finish, pixel data
readback, etc) will create a pipeline bubble

Whenever possible extend pipelining into application by

using asynchronous interfaces

GPU

CPU

job n

job n+1 job n+2

job n+1 job n+2

wait job n+1

 12/20

GPU drivers

Updates of shared data can introduce pipeline bubble

Example: change texture data used by consecutive GPU jobs

GPU

CPU job n+1 job n+2

job n+1 job n+2

update

 13/20

Display composition

How to get pictures on the screen

UAPI

GPU KMD

User mode driver

OpenGL, Vulkan

Display KMD

ApplicationCompositor
EGL, Vulkan WSI

KMS

 14/20

Display pipelining

GPU

CPU

frame n

frame n+2

frame n+1

n+1frame n+1

Display frame n+1

frame n+2 n+2

frame n+3

frame n+2

 15/20

Display pipelining

 Pipelining keeps hardware busy

 Sacrifices latency (a lot) to gain throughput

 16/20

Display latency reduction

GPU

CPU

frame n

frame n+1

frame n+1

n+1frame n+1

Display frame n+1

frame n+2 n+2

frame n+2

frame n+2

 17/20

Display latency reduction (failed)

GPU

CPU

frame n

frame n+1

frame n+1

n+1frame n+1

Display frame n

frame n+2 n+2

frame n+2

frame n+2

frame n+1

 18/20

GPU driver

 Tuned to optimize throughput

 Latency reduction is possible to some degree

 Low latency at good hardware utilization rates is (really) hard

 19/20

Bonus: fences

 Fences keep track of committed work

 Eventual completion guarantees

 20/20

Bonus: fences

GPU

CPU

job 2

job 1

Job 3

job 3job 1 job 2busy

wait result job 3

