Why are GPUs (nhot) fast

Lucas Stach - |.stach@pengutronix.de

graphics stack developer @ Pengutronix

rPe\ngutromx
! https://www.pengutronix.de

mailto:l.stach@pengutronix.de

Magic?

Graphics Processing Units are magical go fast devices, right?

Well, no...

ﬁ 2/20

Deep down

DRAM Capacity, Bandwidth & Latency

16 GB/s
1.3x bandwidth*delay = 320 Bytes

=« Capaci #-Bandwidth @®Latenc
-~ pacyy ! 128x Example:
2 100
:;E,. DDR4 at 4000 MT/s
£ 20x 32 Bit Bus
o 20 ns access time
E 10
>
<
o
2

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Mutlu, Onur & Ghose, Saugata & Gomez-Luna, Juan & Ausavarungnirun, Rachata. (2020). A Modern Primer on Processing in Memory. ﬁ 3/20

Deep down (the memory lane)

How to avoid the memory bus looking like this?

Caches

Throughput over latency

Filling a 2D grid of pixels
* Inherently parallel problem

= Latency matters only at the grid level

Spend HW resources on more, but less
sophisticated execution engines

ﬁ 5/20

Throughput over latency

SIMT - single instruction multiple threads
= Multiple threads share one execution engine

shared register file

If threads use more registers, lower number of
thread can be in flight

= Less opportunities to hide memory latency

E 6/20

GPU hardware

= Optimized for (ridiculously) parallel workloads
= Memory latency hiding

= Breaks down if problem isn't parallelizable or individual
strands are too complex

ﬁ 7/20

GPU drivers

Split between kernel and user mode

OpenGL, Vulkan, OpenCL, etc

UAPI

GPU drivers

= (Relatively) expensive submissions
OpenCL, etc tO hal’dwa re

OpenGL, Vulkan,

= User mode driver amortizes cost
via batching

UAPI = Reducing execution latency by

 emelmodedriver forcing job submission (glFlush,

vkQueueSubmit) increases cost
(driver overhead)
EWZO

GPU drivers

GPU drivers optimize for throughput by allowing the CPU to
get ahead of the GPU (pipelining)

CPU

GPU

GPU drivers

Synchronous waits for results (job finish, pixel data
readback, etc) will create a pipeline bubble

chu Jobn+1 waitjobn+1 [OBIEANNN

Whenever possible extend pipelining into application by

using asynchronous interfaces

GPU drivers

Updates of shared data can introduce pipeline bubble

Example: change texture data used by consecutive GPU jobs

cru bt [l updare GBI
GPY - jobnet | - jobne2

Display composition

How to get pictures on the screen

EGL, Vulkan WSI OpenGlL, Vulkan

Display pipelining

chu famens2 framen+3 |
frame n+2.

e

Display pipelining

= Pipelining keeps hardware busy

= Sacrifices latency (a lot) to gain throughput

Display latency reduction

GPU

cPU x__
—

Display latency reduction (failed)

GPU

e e

ﬁl7/20

GPU driver

= Tuned to optimize throughput
= Latency reduction is possible to some degree

= Low latency at good hardware utilization rates is (really) hard

Bonus: fences

* Fences keep track of committed work

= Eventual completion guarantees

Bonus: fences

T

