
https://www.pengutronix.de

Lucas Stach – l.stach@pengutronix.de

graphics stack developer @ Pengutronix

Why are GPUs (not) fast

mailto:l.stach@pengutronix.de

 2/20

Magic?

Graphics Processing Units are magical go fast devices, right?

Well, no…

 3/20

Deep down

Mutlu, Onur & Ghose, Saugata & Gómez-Luna, Juan & Ausavarungnirun, Rachata. (2020). A Modern Primer on Processing in Memory.

Example:

DDR4 at 4000 MT/s
32 Bit Bus
20 ns access time

16 GB/s
bandwidth*delay = 320 Bytes

 4/20

Deep down (the memory lane)

How to avoid the memory bus looking like this?

Caches

t

t

 5/20

Throughput over latency

Filling a 2D grid of pixels
 Inherently parallel problem
 Latency matters only at the grid level

Spend HW resources on more, but less
sophisticated execution engines

 6/20

Throughput over latency

SIMT – single instruction multiple threads
 Multiple threads share one execution engine

If threads use more registers, lower number of
thread can be in flight

 Less opportunities to hide memory latency

shared register file

 7/20

GPU hardware

 Optimized for (ridiculously) parallel workloads

 Memory latency hiding

 Breaks down if problem isn’t parallelizable or individual
strands are too complex

 8/20

GPU drivers

Split between kernel and user mode

UAPI

kernel mode driver

User mode driver
MESA library

OpenGL, Vulkan, OpenCL, etc

 9/20

GPU drivers

 (Relatively) expensive submissions
to hardware

 User mode driver amortizes cost
via batching

 Reducing execution latency by
forcing job submission (glFlush,
vkQueueSubmit) increases cost
(driver overhead)

UAPI

kernel mode driver

User mode driver
MESA library

OpenGL, Vulkan,
OpenCL, etc

 10/20

GPU drivers

GPU drivers optimize for throughput by allowing the CPU to
get ahead of the GPU (pipelining)

GPU

CPU

job n

job n+1 job n+2

job n+1 job n+2

 11/20

GPU drivers

Synchronous waits for results (job finish, pixel data
readback, etc) will create a pipeline bubble

Whenever possible extend pipelining into application by

using asynchronous interfaces

GPU

CPU

job n

job n+1 job n+2

job n+1 job n+2

wait job n+1

 12/20

GPU drivers

Updates of shared data can introduce pipeline bubble

Example: change texture data used by consecutive GPU jobs

GPU

CPU job n+1 job n+2

job n+1 job n+2

update

 13/20

Display composition

How to get pictures on the screen

UAPI

GPU KMD

User mode driver

OpenGL, Vulkan

Display KMD

ApplicationCompositor
EGL, Vulkan WSI

KMS

 14/20

Display pipelining

GPU

CPU

frame n

frame n+2

frame n+1

n+1frame n+1

Display frame n+1

frame n+2 n+2

frame n+3

frame n+2

 15/20

Display pipelining

 Pipelining keeps hardware busy

 Sacrifices latency (a lot) to gain throughput

 16/20

Display latency reduction

GPU

CPU

frame n

frame n+1

frame n+1

n+1frame n+1

Display frame n+1

frame n+2 n+2

frame n+2

frame n+2

 17/20

Display latency reduction (failed)

GPU

CPU

frame n

frame n+1

frame n+1

n+1frame n+1

Display frame n

frame n+2 n+2

frame n+2

frame n+2

frame n+1

 18/20

GPU driver

 Tuned to optimize throughput

 Latency reduction is possible to some degree

 Low latency at good hardware utilization rates is (really) hard

 19/20

Bonus: fences

 Fences keep track of committed work

 Eventual completion guarantees

 20/20

Bonus: fences

GPU

CPU

job 2

job 1

Job 3

job 3job 1 job 2busy

wait result job 3

