PF_ZIO: Using Network Frames
to Convey I/O Data and Meta-Data

http://www.ohwr.org/projects/zio

Alessandro Rubini, Federico Vaga, Simone Nellaga

Independent consultants in Pavia, Italy.
Working for CERN "hardware and timing" group

@ @ @ Copyright @ 2012 - Bubkini, Vaga, Hellaga CC-BY-S5A 3.0 Unpeorted EEE%EBEEJ

Channels, Csets, Devices

Z10 is concerned with I/O channels
» A channel is a single input or output wire

Channels are grouped in "channel sets™
» All channels in a cset share a trigger instance
» All channels in a cset use the same buffer type

Csets are grouped into devices
» A device is the register/unregister atomic entity
» Several devices of the same type can coexist

The Block

e

N

The atomic data item In ZIO is a block
» A block hosts data samples
» [t also hosts meta-data (control information)
» Data within ZIO never travels without meta-data

Ox00
Ox10
0x20
Ox30
Ox40
Ox50
Ox60

Ox1F0

The Control

V|iv|A|a| sequence | hsamples |ssize|nbits
fam |type | host-identification device-id
cset |chan device name

tstamp: secs

tstamp: ticks

tstamp: bins

mem-addr

reserved

flags

trigger name

This area hosts attributes for the device
and for the currently active trigger.

Device and trigger are each characterized by
16 "standard” atirs and 32 "extended" attrs.
A bit-mask states which attrs are active.

Each attribute is a 32-bit word

TLV record for optional extra information

Z10 Device types

Z10 supports both input and output since inception
Our device types are "analog", "digital” or "time"

Input block:
» Data collected at a specific time or event

Output block:
» Data to be emitted at a specific time or event

"Time'" channels:

» Digital pulses from/to laboratory equipment
*» (No data is associated to a time channel)

The Hard Requirements behind ZIO

Hardware timestamps (better than 1ns precision)
Big data blocks (stripes of many samples)
Off-line creation/gathering of data blocks

High data rate

Easy monitoring of a diverse |/O environment

Support for several (many) boards of the same type

Design Choices behind ZIO

Sysfs-based configuration

No ioctl(2) thank you

Centralized locks (drivers must ighore the issue)
Modular design (each object should be replaceable)

Documented and stable, with version control

All Items in a ZIO Framework

B] Luser Lomon
= |:| Fops Forest

| Socket Salmon
The block is overall blue

|:| Control Cyan Brown
- Data Darker femaio
Purple

+| Network Neutral

Z10 pipeline, User to Hardware and Back

The Data Model Towards the User

ch-0-ctrl c c c c c

o TN B BB BB e

ch-1-ctrl c c c c c

i N B BN B

-

Data is flowing in this direction. Within a channel all blobs are strictly ordered.

Each channel is exported to user space as two char devices
*» You can use blocking-read or poll on control, then read data
» Some users canh choose to ighore control and just read data
» Other users can read control and ighore undesired data
» The "current” control block is exported, read-only, in sysfs
» |Input and Output are completely symmetric

A Different Buffer Implementation

ch-0-ctrl

ch-0-data

ch-1-ctrl

ch-1-data

C

C

Users can change the buffer at runtime
» [f you don't need the timestamp for each and every block...
» You can save buffering memory preserving the data model
» This is not the default, but can be chosen through sysfs

An mmap-capable Buffer Implementation

ctrl dev - = - = - =

LA

data (mmap) | [

vmalloc

This is a buffer using vmalloc instead of kmalloc
» The control includes an "mmap_offset" field
*» You avoid one data copy with DMA-capable peripherals

Defining PF_ZIO for I/O Blocks

The ZIO metadata+data model reminds network frames
» There are some advantages in socket programming
» SO0 we chose to implement PF_ZIO as a socket family
» The control already includes an addr_zio structure...

Ox00 VIiv | A|la sequence nsamples ssize|nbits
0x10| fam | type host-identification device-id

0x20 | cset |chan device name

0x30 tstamp: secs tstamp: ticks
Ox40 tstamp: bins mem-addr | reserved
0x50| flags trigger name

0x60

This area hosts attributes for the device
and for the currently active trigger.

Device and trigger are each characterized by
16 "standard” attrs and 32 "extended" attrs.
A bit-mask states which attrs are active.

Each attribute is a 32-bit word

0x1FQ| TLV record for optional extra information

Mapping Socket Types to ZIO

sock raw | [o[0T [[0S [[[0S .

sock ocram | [[[] O

sock stream | [l

We map the three standard socket types to ZIO blocks
» The code is implemented as a ZIO buffer
» Triggers and Peripheral drivers are unaffected

The ZIO pipeline, with zio-buf-sock active

Communication Paths Within a Host

Communication Paths Across Hosts

The Internal Format of the Frame

Our frame format supports inter-host communication,
*» The "zio" network interface is an Ethernet card
» We carry around an Ethernet header for each block
» sockaddr_zio already has "host type"” and "host-id"

PF_ZIO is not (only) ZIO over Ethernet

The new PF ZIO/AF ZIO is not about Ethernet Frames
» The PF_ZIO address space is about |/O channels
» Frames are used to exchange |I/O blocks
» Typically, the ZIO network lives inside a single host

Why using a "networkless" network protocol?
» A host may need to drive hundreds of channels
» Sockets prove better than many char devices
» Zero-copy hetworking helps with high data rates
» Sniffing is a boost during debugging

(ETH_P_ZIO is just a special case of the idea)

Implementation Status

device: zio-zero (input and output)
device: zio-loop (for stress-testing and diagnostics)
device: line discipline (input: UART or pty for stress-test)
device: GPIO (input and output)
device: AD7888/AD7887 (SPI ADC)
device: fmc-based TDC/DTC
device: fmc-fine-delay (input and output: 10ps resolution)
device: fmc-based 100MS ADC

trigger: kernel timer

trigger: high-resolution timer

trigger: transparent trigger (user/device driven)

trigger: external interrupt or external GPIO
buffer: "kmalloc"
buffer: "data” (SOCK STREAM alike, coalescing blocks)
buffer: "vmalloc” (mmap-capable)

sockets: SOCK_ DGRAM and SOCK RAW (sock STREAM almost working)
tools: zio-dump (control and data)
tools: zio-cat-file (demonstrating mmap for input channels)
tools: pfzio-send and pfzio-receive (like netcat)

Thank you for your attention

http://www.ohwr.org/projects/zio
git://ohwr.org/misc/zio.git

http://www.ohwr.org/projects/zio/documents
http://www.ohwr.org/projects/zio/wiki

Alessandro Rubini, Federico Vaga, Simone Nellaga

