Using Openembedded with Snapdragon Flight

April 2016

Mark Charlebois
Background

- Snapdragon Flight™ board is available from Intrinsyc
- Based on Qualcomm® APQ8074
- Uses 3.4 kernel (Android) and Linux userspace
- Uses Android boot partition and LK bootloader
- Flight stack runs on Hexagon™ DSP RTOS (QuRT)
Openembeddeddebian?

- Debian based rootfs and kernel built using OE (QRLinux)
- Uses OE version from 2013
- QRLinux is available on codeaurora.org
- Depends on proprietary layers for some functionality
Getting the Open Source Layers for QRLinux

- Fetch the source:
 - repo init -u git://codeaurora.org/quic/le/le/manifest -b release
 - m LNX.LER.1.0-68046-8x74.0.xml
 - repo sync -c --no-tags

- Rootfs will not build without proprietary components
- Kernel will build
New Direction
Openembedded Rebase

Goals

● Use supported version of Openembedded (Jethro)
● Leverage meta-qcom layer at yoctoproject
● Port qrlinux packages to standard OE
● Enable builds on newer Ubuntu versions (14.04-15.10)
● Leverage Linaro RBP, meta-qcom
Hexagon SDK Dependencies

- Hexagon-clang requires GLIBCXX_3.4.18
 - Ubuntu 12.04 needs updated libstdc++.so.6
- Uses gcc 4.8 armv7hf cross compiler (i386)
 - Prebuilt Hexagon SDK ARM libs
- Also works on Ubuntu 14.04
- Hexagon SDK Linux installer requires X11
Constraints

- ARM binaries must be compatible with g++ 4.8
- 3.4 kernel can't be built with gcc 5.X
- Old versions of OE don't work on Ubuntu 15.10
 - Native tools don't build (ncurses)
 - Ubuntu 15.10 uses gcc 5.2
- Issues with linaro-gcc-4.8-2013 (i386) on Jethro
- Use linaro-4.8 for Hexagon SDK compatibility
- Jethro uses glibc instead of eglibc (binary compatible)
What's the Status?
Setting up Build Env

- Install Ubuntu 14.04
- Install OE package deps:
 - sudo apt-get install gawk wget git-core diffstat unzip texinfo
gcc-multilib build-essential chrpath socat lib32z1
Set up the OE Layers

- Install layers
 - mkdir oe-atlflight && cd oe-atlflight
 - repo init -u https://github.com/mcharleb/oe-eagle-manifest.git -b jethro -m default.xml
 - repo sync -c --no-tags
<?xml version="1.0" encoding="UTF-8"?><manifest><default revision="jethro" sync-j="4"/></manifest>
Building PX4

New meta-atlflight layer:
- Uses linaro-4.8
- Compatible with Jethro release
- Built as part of atlflight-image
 - PX4-firmware-eagle_2016.01.bb
Building the Rootfs

- Make rootfs image (including PX4)
 - MACHINE=eagle DISTRO=atlflight . setup-environment
 - bitbake atlflight-image
Kernel Future Direction

- Need to deconstruct qrlinux kernel recipe
- Must use 3.4 CAF Android kernel for required features
 - fastRPC, etc
 - Must work on Ubuntu 15.10 (linaro-4.8), and 14.04
- Would like to use recent upstream kernel
 - Boots on Sony APQ8074 devices
 - Not all features supported upstream
Building the Kernel (today)

- QRLinux is still used to build the kernel

  ```
  export MANIFEST_URI=git://codeaurora.org/quic/le/le/manifest
  repo init -u $(MANIFEST_URI) -b release -m LNX.LER.1.0-68046-8x74.0.xml
  repo sync -c --no-tags
  export WS=$(pwd)
  pushd oe-core 1>/dev/null
  source build/conf/set_bb_env.sh
  bitbake linux-qr-eagle8074
  ```

- Does NOT work on Ubuntu 15.10 (gcc 5)
- Does not work with Jethro
Kernel ToDo

- Package kernel for Android boot partition
 - Re-use easy-410c-oe work
- Many conftest crashes when building the kernel
Rootfs ToDo

- Port qrlinux packages
- Package proprietary files in OE layer
- Add Hexagon SDK libraries to rootfs
Thank You
Questions?