
USB arsenal for masses

Krzysztof Opasiak

Samsung R&D Institute Poland

Agenda

USB protocol intro

USB sniffing & modification

USB security testing

Summary

Q & A

1

USB protocol intro

What USB is about?
It’s about providing services!

• Storage
• Printing
• Ethernet
• Camera
• Any other

3

Endpoints…

• Device may have up to 31 endpoints
(including ep0)

• Each of them gets a unique endpoint address
• Endpoint 0 may transfer data in both directions
• All other endpoints may transfer data in one direction:

IN Transfer data from device to host
OUT Transfer data from host to device

4

Endpoint types

• Control
• Bi-directional endpoint
• Used for enumeration
• Can be used for application

• Bulk
• Used for large data transfers
• Used for large, time-insensitive data

(Network packets, Mass Storage, etc).
• Does not reserve bandwidth on bus, uses whatever time is left over

5

Endpoint types

• Interrupt
• Transfers a small amount of low-latency data
• Reserves bandwidth on the bus
• Used for time-sensitive data (HID)

• Isochronous
• Transfers a large amount of time-sensitive data
• Delivery is not guaranteed (no ACKs are sent)
• Used for Audio and Video streams
• Late data is as good as no data
• Better to drop a frame than to delay and force a re-transmission

6

USB device

7

USB bus

• USB is a Host-controlled bus
• Nothing on the bus happens without the host first initiating it.
• Devices cannot initiate any communication.
• The USB is a Polled Bus.
• The Host polls each device, requesting data or sending data.

8

USB transport (Link Layer)

IN
• Host sends an IN token
• If the device has data:

• Device sends data
• Host sends ACK

• else
• Device sends NAK
• Host will retry until timeout

9

USB transport (Link Layer)

OUT
• Host sends an OUT token
• Host sends the data (one

packet)
• If device accepts data transfer:

• Device sends an ACK
• else

• Device sends an NAK
• Host will retry until success or

timeout
∗ PING, NYET - bandwidth savers

10

USB transfer vs transaction

• Transaction
• Delivery of data to endpoint
• Limited by wMaxPacketSize

• Transfer
• One or more transactions
• May be large or small
• Completion conditions

Source: [10]

11

USB Request Block

• Kernel provides hardware independent
API for drivers

• URB is a kind of envelope for data
• This API is asynchronous

• usb_alloc_urb()
• usb_free_urb()
• usb_submit_urb()
• usb_unlink_urb()
• usb_kill_urb()

struct urb {
struct list_head urb_list;

struct usb_device *dev;
unsigned int pipe;

int status;
unsigned int transfer_flags;
void *transfer_buffer;
u32 transfer_buffer_length;
u32 actual_length;

unsigned char *setup_packet;

void *context;
usb_complete_t complete;

};

12

USB sniffing & modification

USBMon

• Kind of logger for URB related events:
• submit()
• complete()
• submit_error()

• So it’s not going to show you link layer USB tokens!
• Text interface
• Binary Interface
• One instance for each USB bus

14

Data validity

• Data in URB buffer may is not always valid
• Validity depends on transfer results
• And on endpoint direction:

IN OUT
submit() NO YES

complete() YES NO

15

Good old friend Wireshark - DEMO

16

USBProxy[1]

• Framework for USB MITM
• In theory, works on any SBC

with UDC and HCD
• In practice, works only on BBB

with custom kernel image
• Uses libusb & GadgetFS
• Can intercept only one device
• Still needs some love…

17

Just a logic analyzer…

• For Full or Low Speed devices definitely yes!
• High speed bus signaling is 480 Mbit/s
• So you would need to probe with 1GHz frequency

18

OpenVizsla[8]

Source: [9]

19

OpenVizsla host tools - DEMO

• ovctl.py
• ViewSB
• Wireshark!

20

USB security testing

FaceDancer[3]

• Hardware

Source: [2]

• Software
• Python framework for emulating USB devices

22

BTW 2x Facedancer MITM

Source: [12]

23

GreatFET[4]

• Hacking platform
• Initially created for Radio Hacking
• NXP LPC4330 MCU
• 1x HS USB
• 1x FS USB
• Compatible with Facedancer software

Source: [6]

24

GreatFET Rhodadendron[5]
• GreatFET neighbor with USB3343 for sniffing
• Unfortunately GreatFET does not have any external RAM memory…

Source: [5]

25

umap2[13]

• umap2scan
• umap2emulate
• umap2stages
• umap2fuzz (kitty-based)
• Supported backends:

• Facedancer (and GreatFET)
• Raspdancer
• GadgetFS (partially supported)

26

vUSBf[11] & friends

• VM-based fuzzing
• Hypervisor specific
• Limited by hypervisor

implementation
• Scapy-based fuzzing

Source: [11]

27

syzcaller-based architecture[7]

• DummyHCD-based
• GadgetFS/

Custom module
• Use syzcaller to

generate USB traffic
• Require

“description” files
Source: [7]

28

Summary

Summary

• You don’t need to spend a lot money to sniff USB traffic
• There is a number of Open Source and Open Hardware USB tools
• There is no perfect architecture for testing USB security

30

Q & A

Thank you!

Krzysztof Opasiak
Samsung R&D Institute Poland

+48 605 125 174
k.opasiak@samsung.com

32

References I

[1] A proxy for USB devices, libUSB and GadgetFS. Oct. 2017. url:
https://github.com/dominicgs/USBProxy.

[2] FaceDancer21 in Hackerware House. url:
https://hackerwarehouse.com/product/facedancer21/.

[3] FaceDancer21 (USB Emulator/USB Fuzzer). url:
https://int3.cc/products/facedancer21.

[4] GreatFET github repo. url:
https://github.com/greatscottgadgets/greatfet.

[5] GreatFET Rhododendron. url:
https://github.com/ktemkin/greatfet-rhododendron.

33

https://github.com/dominicgs/USBProxy
https://hackerwarehouse.com/product/facedancer21/
https://int3.cc/products/facedancer21
https://github.com/greatscottgadgets/greatfet
https://github.com/ktemkin/greatfet-rhododendron

References II
[6] GreatScottGadgets GreatFET. url:

https://greatscottgadgets.com/greatfet/.
[7] Andrey Konovalov. “Coverage-Guided USB Fuzzing with Syzkaller”. In:

OffensiveCon. Berlin, DE, 2019. url:
https://www.youtube.com/watch?v=1MD5JV6LfxA.

[8] OpenVizsla USB Analyzer. url:
https://github.com/openvizsla/ov_ftdi.

[9] OpenVizsla USB Analyzer - fail0ver article. url:
https://fail0verflow.com/blog/2014/ov3-hardware/.

[10] Alan Ott. “USB and the Real World”. In: Embedded Linux Conference. San
Jose, CA, USA, 2014. url:
http://elinux.org/images/6/66/Elc\%5F2014\%5Fusb.pdf.

34

https://greatscottgadgets.com/greatfet/
https://www.youtube.com/watch?v=1MD5JV6LfxA
https://github.com/openvizsla/ov_ftdi
https://fail0verflow.com/blog/2014/ov3-hardware/
http://elinux.org/images/6/66/Elc\%5F2014\%5Fusb.pdf

References III
[11] Ralf Spenneberg Sergej Schumilo and Hendrik Schwartke. “Don’t trust

your USB! How to find bugs in USB device drivers”. In: Black Hat Europe.
Amsterdam, NL, 2014. url: https://www.blackhat.com/docs/eu-
14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-
Find-Bugs-In-USB-Device-Drivers-wp.pdf.

[12] Rijnard van Tonder and Herman Engelbrecht. “Lowering the USB Fuzzing
Barrier by Transparent Two-Way Emulation”. In: 8th USENIX Workshop on
Offensive Technologies (WOOT 14). San Diego, CA: USENIX Association,
2014. url: https://www.usenix.org/conference/woot14/workshop-
program/presentation/van-tonder.

[13] umap2: The second revision of NCC Group’s python based USB host
security assessment tool. url: https://github.com/nccgroup/umap2.

35

https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://www.usenix.org/conference/woot14/workshop-program/presentation/van-tonder
https://www.usenix.org/conference/woot14/workshop-program/presentation/van-tonder
https://github.com/nccgroup/umap2

	USB protocol intro
	USB sniffing & modification
	USB security testing
	Summary
	Q & A
	References

