
Using SoC Vendor HALs in the Zephyr 
Project
Maureen Helm, NXP



What is Zephyr™ Project?

Small Footprint RTOS

• As small as 8KB

• Enables
applications code 
to scale

• Configurable 

• Modular

Truly Open Source

• Apache 2.0 License 

• Hosted by Linux 
Foundation

• Transparent 
development

Cross Architecture

• ARM

• x86

• ARC

• NIOS-II

• RISC-V

• Xtensa

2



Zephyr OS

• The kernel and HAL

• OS Services such as IPC, Logging, file 
systems, crypto

Zephyr Project

• SDK, tools and development 
environment

• Additional middleware and features

• Device Management and

• Bootloader

Zephyr Community

• 3rd Party modules and libraries

• Support for Zephyr in 3rd party 
projects, for example: Jerryscript, 
Micropython, Iotivity

Zephyr Eco-System
Zephyr “Community”

Zephyr Project

Zephyr OS

Kernel / HAL

OS Services

Application Services

Kernel / HAL

• Scheduler

• Kernel objects and services

• low-level architecture and board support

• power management hooks and low level 
interfaces to hardware

OS Services and Low level APIs

• Platform specific drivers 

• Generic implementation of I/O APIs

• File systems, Logging, Debugging and IPC

• Cryptography Services

• Networking and Connectivity 

• Device Management

Application Services

• High Level APIs

• Access to standardized data models

• High Level networking protocols



Why Use SoC Vendor HALs?

Core and peripheral register definitions
Low-level stateless peripheral drivers
Bare metal transactional drivers

Maintained by the SoC vendor
License is often permissive
Used in other projects, not just Zephyr

Greater maturity and QA testing

Simplifies adding new SoCs and drivers to Zephyr

4



Tradeoffs

Code is maintained elsewhere

More difficult to update upstream

License new to Zephyr, or not compatible with 
Apache 2.0

Code is used elsewhere

APIs not compatible

Features not implemented

5



HALs Currently in Use

Vendor HAL SoC Family

Arm CMSIS SAM, nRF5, Kinetis, EFM32, 
STM32

Atmel ASF SAM

Intel QMSI Quark

Nordic MDK nRF5

NXP MCUXpresso SDK Kinetis

SiLabs Gecko SDK EFM32

ST STM32Cube SDK STM32

TI SimpleLink SDK SimpleLink

6



Levels of Abstraction

Transactional HAL driver
Thin Zephyr shim driver
MCUX and QMSI

Low-level, stateless HAL driver
Larger Zephyr shim driver
STM32

Register definitions only
Near-native Zephyr driver
Atmel, Nordic

7



CMSIS

CMSIS = Cortex Microcontroller System Interface Standard
CMSIS-Core, -SVD, -DSP, -Driver, etc.
Defined by Arm

CMSIS-Core standardizes processor core access and 
peripheral definitions

Arm provides generic Cortex-M header files
Vendors provide device header files

Zephyr kernel port uses CMSIS to access NVIC, SCB registers
Zephyr drivers use CMSIS to access peripheral registers

8



Common enablement for NXP Cortex-M MCUs
Peripheral register definitions

CMSIS-Core compatible
Generated from same source as hardware 
documentation

Bare metal peripheral drivers
Similar APIs across Kinetis and LPC families 
(UART/LPUART/LPSCI, SPI/DSPI/LPSPI, etc.)
Stateless and transactional abstraction levels
Minimal inter-dependencies
Tested on all hardware platforms

IDE Example projects
Demonstrate peripheral driver APIs

MCUXpresso SDK

9

CMSIS-CORE and CMSIS-DSP

Microcontroller Hardware

Stacks / 
Middleware

Board 
Support

Application Code

RTOS Peripheral Drivers



The ext/ Folder

Externally maintained source code lives in ext/
Includes SoC vendor HALs, mbedTLS, TinyCrypt, FatFS, 
Segger RTT
Permissively-licensed, but not necessarily Apache 2.0

Many are BSD 3-clause

Imported as-is with minimal modification
If modifications are needed, make them in a separate 
commit

Exempt from Zephyr coding style

10



Import Process

1. Submit “ Code Component README” with source code patch to 
the TSC

2. Are the TSC members agreeable (via TSC vote) to the proposal?
• NO – software is rejected
• YES – TSC chair forwards README to the Governing Board for review

3. Does any member of the Governing Board raise concern over 
inclusion in 2 week review period

• NO – software is accepted, and README is included within the project’s 
documentation (in tree and external sites as appropriate)

• YES – Governing Board will meet to discuss whether to override the TSC 
approval or identify other approaches

11



Code Component README

Origin: XYZ (project that hosts original code)
Status: The current version supported in Zephyr is XYZ 1.4. See 
https://github.com/xyz/releases for more details.
Purpose: Hardware Abstraction Layer (HAL) for ABC Microcontroller products
Description: XYZ is a Hardware Abstraction Layer (HAL) for ABC Microcontroller products. It 
currently supports the following SoCs:

- ZBC DFG Microcontroller
- ZBC DFH Microcontroller

Dependencies: XYZ assumes ….. is available to link to.
URL: https://github.com/xyz
commit: 08ded7f21529c39e5133688ffb93a9d0c94e5c6e
Maintained-by: External
License: BSD-3-Clause
License Link: https://github.com/xyz/LICENSE

12



Adding a new Arm SoC

Does the SoC belong to an existing family or series?

Are there CMSIS headers available?
Is the license compatible?

Are there transactional or stateless drivers 
available?

Is the license compatible?

Are the APIs compatible?

Can they be used for other SoCs in the same family?

13



Summary

SoC vendor HALs reduce the amount of custom 
Zephyr code

Can have different levels of abstraction

Successfully used by many SoCs in Zephyr

Review the Input Process and git history

Talk with maintainers

14



Participate!

15

Examine the code and join!

Impact architecture Direction Marketing / Advocacy Decision making



16

www.zephyrproject.org


