
Reprogrammable Hardware

under Linux

Alan Tull

Altera Corp Embedded Linux Group

ELC Dublin 2015

Introductions

2

Background in driver development for ARM and x86

Linux driver developer 15 years

Altera Corporation

Embedded Linux Group in Austin, TX

Driver support for SoCFPGA = FPGA on a SoC

FPGA Basics

3

FPGA = Field Programmable Gate Array

Designed to be configured after manufacturing

Array of programmable logic blocks (“Fabric”)
 Also I/O, DSPs, and other specialized blocks

Design in some Hardware Design Language (HDL) compiled into a bitstream

Bitstream is used to program the FPGA

Fully or partially reconfigured

FPGA

Hardware

Design

Bitstream FPGA

System including Processor + FPGAs

CPU FPGA

FPGAs in a system (hardware)

4

Server with FPGA’s on PCIe card

Embedded Processor + FPGA

Embedded

CPU
FPGA

Embedded CPU including the

FPGA

FPGA
FPGAs

Altera SoCFPGA

5

Hard Processor System (HP5)

ARM Cortex-A9

NEONTM / FPU

L1 Cache

ARM Cortex-A9

NEONTM / FPU L1

Cache

USB OTG

(x2)
Ethernet (x2)

L2 Cache GPIO

PC

(x2)

Quad 5PI

Flash Control
64-KB RAM

JTAG

Debug/Trace

SPI

(x2)

CAN

(x2)

NAND Flash
SD/SDIO/MM

C
Timers (x11)

DMA

(x8)

UART

(x2)

Shared Multiport DDR SDRAM

Controller

HP5 tp

FPGA

FPGA

to HPS

FPGA Config

 FPGA

• 28LP Process

• 8-input ALMs

• Variable-precision DSP

• M10K memory and 640 bit MLABs

• Fractional PLLs

Hard Multiple DDR SDRAM Controller
Hard PCI Express®

(PCIe)

3,4,5,6,

and 10 Gpbs

Transceivers

H
P

S
 I/O

s

H
P

S
 I/O

s

ARM Cortex-A9

FPGA

FPGA under an OS – A Few Examples

6

FPGAs can be used as accelerator or as reconfigurable hardware

Page processing in printers
 Altera CycloneV SoCFPGAs

 Pipelining processing the pages

 Reconfiguring FPGA to switch out processes in smaller FPGA

Server acceleration
 ½ width Open Compute servers, each with one 2 Xeons + 1 StratixV

FPGA Based Hardware Soft IP
 such as uarts, gpio, mailbox, triple speed ethernet, etc

Kernel FPGA Reprogramming

7

Problem Statement:
 No standard way of configuring FPGAs in Linux kernel

 Each FPGA driver has custom interface

Proposed FPGA Manager framework
 Common configuration interface

 Different FPGAs supported

 Bitstreams are FPGA device specific, but interface is shared

 Separate interfaces suited for use models

FPGA Manager Framework History

8

Both biggest FPGA manufacturers (Altera, Xilinx) involved

My first version (in Altera GIT) ~ April 2013
 Low Level Ops

 FPGA specific low level drivers register ops with the framework

 Userspace driven interface

cat image.rbf > /dev/fpga0

Xilinx
 v1: cat image.rbf > /sys/class/fpga/fpga0/fpga

 v2: echo image.rbf > /sys/class/fpga/fpga0/firmware

My next version ~ Aug 2014
 Core Framework with no userspace interface

 Device Tree Overlays support

 Lots of mailing list feedback

 11 versions so far since then with other interfaces (sysfs, configfs).

 kept coming back to DT overlays

FPGA Manager Framework History - Interfaces

9

Interfaces driven by userspace
 cat’ing the image file to the driver

Either writing to the devnode or to a sysfs file

 Writing the name of the image file to a sysfs file

firmware loads it the file, gets loaded to FPGA

Workable, sort of, but not pretty

Giving userspace control of a low level function
 Stability (easily crash)

 Security

Userspace still had to modprobe the drivers
 Drivers had to be modules

Bridges also controlled from userspace?

FPGA Manager Framework – Current Proposal

10

FPGA Manager Framework

Low Level FPGA

Driver

Low Level FPGA

Driver

FPGA Device Specific

Code
(configuring)

Higher Level

Interface

Shared Interfaces

Not specific to any FPGA
Higher Level

Interface

Proposed High Level Interface

11

Simple FPGA Bus

Uses Device Tree Overlays
 adding/removing to the live tree

Overlay could drive:
 FPGA getting programmed with the right image

 Bridges being enabled/disabled

 Drivers getting probed

This is normal kernel stuff, we get most of this for free

SoCFPGA

ARM

Processor

FPGA

FPGA Fabric

FPGA on a SoC (simplified)

12

FPGA

Manager HW

Bridges

Programming

interface

CPU programs FPGA
 FPGA Manager

Bridges allow memory mapped

access between FPGA and host

processor
 Logic in FPGA can have registers

 DMA

Reconfiguration

13

Bitstream compiled from hardware design

CPU uses FPGA Manager to write the FPGA

Bridges allow memory mapped access FPGA CPU
 Must be disabled during programming

Linux drivers for hardware on FPGA
 Register access is through bridges

 DMA access through bridges

 Stop access during driver remove

 Remove drivers before disabling bridges

FPGA configuration sequence

14

Disable Bridges

CPU writes bitstream to FPGA

Enable Bridges

Load Drivers

FPGA

FPGA Fabric

Full Reconfiguration

15

Programming

Interface

Processor

FPGA

Manager HW

Bridges

Control hardware

bridges

FPGA

Partial Reconfiguration Regions

16

Programming

Interface

Processor

FPGA

Manager HW

Bridges

FPGA Fabric

B
ri
d
g
e

PR Region

B
ri
d
g
e

B
ri
d
g
e

PR Region

PR Region

Needs bridges within the

fabric for each region

FPGA Manager Framework – API and ops

17

FPGA Manager Framework

Low Level FPGA

Driver

Low Level FPGA

Driver

Ops to talk to low level

driver

Higher Level

Interface

API functions to talk to

interface
Higher Level

Interface

FPGA Manager Framework

18

Exposes methods for reconfiguring FPGA
 Manufacturer agnostic API functions

Low level drivers register with framework
 ops for FPGA specific stuff

No user space interface (other than status in sysfs)

Framework – 6 API functions

19

Register/Unregister a low level driver:
 fpga_mgr_register

 fpga_mgr_unregister

Get/Put a reference to a particular FPGA Manager:
 of_fpga_mgr_get

 fpga_mgr_put

Write a bitstream to a FPGA from a buffer
 fpga_mgr_buf_load

Write a bitstream to a FPGA using firmware class
 fpga_mgr_firmware_load

Using FPGA Manager Framework API to configure a FPGA

20

Get a reference to a specific FPGA manager:
 struct fpga_manager *mgr = of_fpga_mgr_get(dn);

Load the FPGA from a buffer in RAM or from firmware.
 fpga_mgr_buf_load(mgr, flags, buf, count);

 fpga_mgr_firmware_load(mgr, flags, “image.rbf");

Put the reference
 fpga_mgr_put(mgr);

FPGA Manager Framework ops

21

Ops for the write cycle (in call order):

1. write_init

 Do FPGA specific steps to prepare device to receive bitstream

2. write

 Send a bitstream buffer to FPGA

3. write_complete

 Do FPGA specific steps after configuration

Two other ops:
 state

Return FPGA state from low level driver

 fpga_remove

Called if the fpga manager driver is removed

Simple FPGA Bus

22

FPGA Manager Framework

Low Level FPGA

Driver

Low Level FPGA

Driver

Simple FPGA

Bus

Other Higher Level

Interface

Simple FPGA Bus

23

Built on top of the FPGA Manager Framework

Uses Device Tree Overlays

Handles:
 Bridges

 FPGA configuration

 Drivers

Configfs interface:
 mkdir /config/device-tree/overlays/1

 echo “overlay.dtbo” > /config/device-tree/overlays/1/path

Simple FPGA Bus (2)

24

An overlay will have this information:
 Which FPGA

 Which image file

 Which bridges to enable and disable

 Child nodes for devices that are about to get loaded

Load order – when you load an overlay, this happens:
1. Disable bridges

2. Load FPGA

3. Enable bridges

4. Probe drivers (call of_platform_populate)

Unload order is in reverse order

Currently on the mailing list, may need some consideration about how to

represent bridges

More Considerations – Firmware

25

The FPGA Manager uses the firmware layer to load the whole image into RAM
 Then the FPGA Manager Framework can load to the FPGA.

 Then release the firmware and get the RAM back.

On an embedded platform, RAM can be very small while the FPGA image can

be large. Some users may run up against this.

A kernel method to stream firmware files without loading the whole file would be

great.

On the mailing list

26

FPGA Manager (soon v12)

simple-fpga-bus

Acknowledgements

27

Pantelis Antoniou - for his work on Device Tree Overlays

Thanks for all the feedback on the mailing list!

Exciting Free Stuff – Win a SoCFPGA eval board

Drop of your business card at the

Altera booth #33 for a chance to win

an Atlas SoC evaluation kit

Meet Altera Linux people

Check out Altera’s technology

showcase at booth #33

28

Thank You

