Overview of the PPC64 targets support in Yocto Project

Yocto Project Virtual Summit 2021

Maciej Pijanowski

3MDEB
Maciej Pijanowski
Embedded Firmware Team Leader

- @macpijan
- maciej.pijanowski@3mdeb.com
- linkedin.com/in/maciej-pijanowski-9868ab120

- 5 years in 3mdeb
- interested in:
 - Embedded Linux
 - build systems (e.g. Yocto)
 - system security
coreboot licensed service providers since 2016
coreboot project leadership participants
UEFI Adopters since 2018
Official consultants for Linux Foundation fwupd/LVFS project
Yocto Participants and Embedded Linux experts
Open Source Firmware enthusiasts and evangelists
• Why ppc64?
• History of the ppc64 support in Yocto
• Overview of the available ppc64 targets
• BE and LE considerations
• Testing qemuppc64 (Big Endian)
• Testing qemuppc64le (Little Endian)
• Talos II platform overview
• POWER9 boot flow
• Adding support for Talos II hardware target
• Testing build for Talos II
• Q&A
• IBM OpenPOWER architecture
 ○ open documentation and open source firmware
• 3mdeb is porting coreboot to POWER9 (Talos II platform)
• POWER9 support in coreboot: https://www.youtube.com/watch?v=Mb__SNfMVFW
• Status of OpenPOWER support in coreboot: https://fosdem.org/2021/schedule/event/statusopenpowercoreboot/
• Latest releases: https://github.com/3mdeb/openpower-coreboot-docs/blob/release_doc/releases.md
• Development status:
 ○ documentation: https://github.com/3mdeb/openpower-coreboot-docs
 ○ code: https://github.com/3mdeb/coreboot/tree/talos_2_support
I asked on the qemuppc64 state last year (Oct 2020)

- State of qemuppc64: https://lists.yoctoproject.org/g/yocto/message/51158

 - consideration about dropping powerpc (32-bit) support
 - possibly (?) replacing it with ppc64
- Khem Raj pointed me to his patches
 - qemuppc64 machine definition: https://github.com/YoeDistro/openembedded-core/commit/885104134403da36b9ecb47ced6423e183262392
 - powerpc64le support in linux-yocto: https://github.com/YoeDistro/openembedded-core/commit/aa9797636a6039ede752a57b05f839ce641e3cfc
- I tried that and left some status here: https://github.com/3mdeb/meta-ppc64#notes
- I stopped working on that for a while
- Got back a few months later
Today available in master or hardknott branches
qemuppc64 was first added to oe-core in March 2021
 • It is based on the POWER9 CPU target

commit ef910d7a51a7ef81b725e3cc7b80c2aeb7347ead
Author: Khem Raj <raj.khem@gmail.com>
Date: Tue Mar 9 09:32:06 2021 -0800
qemuppc64: Add a QEMU machine definition for ppc64

(From OE-Core rev: 68275b25f0a1941cd9b3d2ddca60e9149ba18d37)
Signed-off-by: Khem Raj <raj.khem@gmail.com>
Signed-off-by: Richard Purdie <richard.purdie@linuxfoundation.org>
diff --git a/meta/conf/machine/qemuppc64.conf b/meta/conf/machine/qemuppc64.conf
new file mode 100644
index 000000000000..0682e752be52
--- /dev/null
+++ b/meta/conf/machine/qemuppc64.conf
@@ -0,0 +1,24 @@
+@TYPE: Machine
+@NAME: QEMU PPC64 machine
+@DESCRIPTION: Machine configuration for running a PPC system on QEMU
+require conf/machine/include/qemu.inc
+require conf/machine/include/tune-power9.inc
The default tune is ppc64p9le (Little Endian)
As for now, there is only one target defined in bsp/qemu-ppc64:

```c
# SPDX-License-Identifier: MIT
define KMACHINE qemuppc64
define KTYPE standard
define KARCH powerpc

include ktypes/standard.scc

branch qemuppc

include cfg/8250.scc
include features/input/input.scc
include features/usb/ohci-hcd.scc
include features/scsi/disk.scc
include features/scsi/cdrom.scc

include cfg/virtio.scc
include qemu-ppc64.scc

# default policy for standard kernels
include features/latencytop/latencytop.scc
```

- In the `qemu-ppc64.cfg` we can see that Little Endian is used

```c
CONFIG_CPU_LITTLE_ENDIAN=y
```

- We needed to test out the Big Endian build as well
Two definitions:

- mti-malta64-le-standard.scc
- mti-malta64-be-standard.scc

KMACHINE definition for BE

```bash
define KMACHINE mti-malta64-be
define KMACHINE qemumips-64
define KMACHINE qemumips64
```

KMACHINE definition for LE

```bash
define KMACHINE mti-malta64-le
define KMACHINE qemumips64le
define KMACHINE qemumips64el
```
Debian uses mips64el for Little Endian and mips64 for Big Endian
Debian uses ppc64el for Little Endian and ppc64 for Big Endian
Fedora uses ppc64le for Little Endian and ppc64 for Big Endian
openSUSE uses ppc64le for Little Endian and ppc64 for Big Endian
Gentoo switched from ppc64 to ppc64le for Little Endian:

Conclusions:

- It may make sense to use ppc64 for Big Endian and ppc64le for Little Endian
 - consistency with major distributions
 - consistency with existing mips64 target
By analogy, BE target could be introduced as `qemu-ppc64-be-standard.scc`

```
# SPDX-License-Identifier: MIT
define KMACHINE qemuppc64
define KTYPE standard
define KARCH powerpc
```

And LE target as `qemu-ppc64-le-standard.scc`

```
# SPDX-License-Identifier: MIT
define KMACHINE qemuppc64le
define KARCH powerpc
```

Patches: https://github.com/3mdeb/yocto-kernel-cache/commits/qemuppc64be
• Rename qemuppc64 to qemuppc64le
• Introduce qemuppc64 as Big Endian target

```bash
# @TYPE: Machine
# @NAME: QEMU PPC64 machine (Big Endian)
# @DESCRIPTION: Machine configuration for running a PPC system on QEMU

require conf/machine/qemuppc64le.conf

# change the tune from LE to BE
DEFAULTTUNE = "ppc64p9"
```

• What is the impact of changing qemuppc64 to qemuppc64le?
 ○ alternatively, we can just introduce qemuppc64be

• Patches: https://github.com/3mdeb/poky/commits/qemuppc64be
Configuration can be found in meta-ppc64 repo:
https://github.com/3mdeb/meta-ppc64/tree/talos-ii

Build

$ SHELL=/bin/bash kas-docker build ./meta-ppc64/kas-le.yml

Run QEMU

$ SHELL=/bin/bash kas-docker build ./meta-ppc64/kas-le.yml
(docker)$ runqemu slirp nographic

Result

Poky (Yocto Project Reference Distro) 3.3+snapshot-00cd78d9decebcf5201bbdebaef76Secba22f7d0 qemuppc64le hvc0
root@qemuppc64le:--# uname -a
Linux qemuppc64le 5.10.34-yocto-standard #1 SMP PREEMPT Mon May 3 02:17:32 UTC 2021 ppc64le ppc64le ppc64le GNU/Linux
root@qemuppc64le:--# echo -n I | od -to2 | head -n1 | cut -f2 -d" " | cut -c6
1

prints 1 on Little Endian OS
Configuration can be found in meta-ppc64 repo:
https://github.com/3mdeb/meta-ppc64/tree/talos-ii

Build

SHELL=/bin/bash kas-docker build ./meta-ppc64/kas-be.yml

Run QEMU

$ SHELL=/bin/bash kas-docker shell ./meta-ppc64/kas-be.yml
(docker)$ runqemu slirp nographic

Result

Poky (Yocto Project Reference Distro) 3.3+snapshot-00cd78d9decebcf5201bbdebaef765ecba22f7d0 qemuppc64le hvc0

root@qemuppc64le:~# uname -a
Linux qemuppc64le 5.10.34-yocto-standard #1 SMP PREEMPT Mon May 3 02:17:32 UTC 2021 ppc64le ppc64le ppc64le GNU/Linux

root@qemuppc64le:~# echo -n I | od -to2 | head -n1 | cut -f2 -d" " | cut -c6
0

prints 0 on Big Endian OS
Available ppc64 tunes

- Available in oe-core in `meta/conf/machine/include`
 - `tune-ppce5500.inc`
 - `tune-ppce6500.inc`
 - `tune-power5.inc`
 - `tune-power6.inc`
 - `tune-power7.inc`
 - `tune-power9.inc`
- We have POWER5-7 and POWER9 from IBM
- We have e5500 and e6500 from NXP
 - 2011-2012 CPUs
 - NXP shifted to ARM
 - no new PowerPC design since 2013
 - no roadmap for future products
PPC64 hardware targets

- **t1023rdb-64b.conf**
 - Board: Freescale T1023RDB
 - SoC: NXP QorIQ T1023
 - CPU: PowerPC e5500 from NXP

- **t4240rdb-64b.conf**
 - Board: Freescale 4240RDB
 - SoC: NXP QorIQ T4240
 - CPU PowerPC e6500 from NXP

- They are using ppce5500 and ppce6500 tune by default
 - Big Endian
 - no Little Endian variant
Advertised as:

- The first modern (post-2013), owner-controllable mainboard
- Built around the IBM POWER9 processor
- Open source firmware, all the way down to the CPU microcode

Main specs:

- 2 x POWER9-compatible CPU sockets
- 16 x DDR4 DIMM slots (up to 2TB DDR4 total memory)
- 3 x PCIe 4.0 x16 slots
- 2 x PCIe 4.0 x8 slots
- 2 x Broadcom Gigabit Ethernet ports
- 4 x USB 3.0 ports, 1 x USB 2.0 port
- 1 x ASpeed (AST2500) BMC with OpenBMC:
 https://github.com/openbmc/openbmc
POWER9 boot process

- Power ON
- Self Boot Engine
- Hostboot
- Petitboot + skirout
- Skiboot
- PNOR flash
- Flash storage/network
- Linux Operating System
- SEEPROM
- Self Boot Engine
- OTPROM
- Power ON

Yocto Project Virtual Summit 2021
CC BY | Maciej Pijanowski
• skiroot
 ◦ Linux kernel and rootfs
 ◦ provides environment where Petitboot runs
 ◦ built with Buildroot
• Petitboot - https://github.com/open-power/petitboot
 ◦ kexec-based bootloader
 ◦ Linux kernel uses kexec syscall to load another kernel
 ◦ pb-discover - manages devices, finds and boots boot targets
 ◦ petitboot-nc - ncurses client (UI)
 ◦ parses syslinux, kboot, yaboot, pxe and native (petitboot) configs into a single menu
Based on the qemuppc64 target

```bash
#!/TYPE: Machine
#!/NAME: Talos II machine
#!/DESCRIPTION: Machine configuration for running on Talos II (POWER9) hardware

require conf/machine/include/tune-power9.inc

PREFERRED_PROVIDER_virtual/kernel ?= "linux-mainline"
KERNEL_IMAGETYPE = "vmlinux"
SERIAL_CONSOLES ?= "115200;hvc0"
MACHINE_FEATURES = "alsa usbgadget screen keyboard pci usbhost ext2 ext3 serial vfat"
MACHINE_EXTRA_RRECOMMENDS += " kernel-modules"
IMAGE_FSTYPES += "tar.bz2 ext4"

PREFERRED_PROVIDER_virtual/xserver ?= "xserver-xorg"
PREFERRED_PROVIDER_virtual/egl ?= "mesa"
PREFERRED_PROVIDER_virtual/libegl ?= "mesa"
PREFERRED_PROVIDER_virtual/libgles1 ?= "mesa"
PREFERRED_PROVIDER_virtual/libgles2 ?= "mesa"

XSERVER ?= "xserver-xorg \n${@bb.utils.contains('DISTRO_FEATURES', 'opengl', 'mesa-driver-swrast xserver-xorg-extension-glx', '', d)} \nxf86-video-fbdev \n"

IMAGE_INSTALL_append = " petitboot"
```
petitboot.bb

```bash
SRC_URI = "file://petitboot.conf"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://$(COREBASE)/meta/COPYING.MIT;md5=3da9cfcbcb788c80a0384361b4de20420"
S = "$(WORKDIR)"

do_install() {
    install -d -m 0644 $(D)/boot/petitboot.conf
    install -m 0644 $(S)/petitboot.conf $(D)/boot/petitboot.conf
}

FILES_${PN} += "/boot"
```

petitboot.conf

```bash
name 3mdeb Yocto build for PPC64
image /boot/vmlinux
args console=tty0 console=hvc0 rootdelay=3 rootwait panic=10 root=/dev/sdb
```
Kernel configuration

- linux-mainline 5.12.0 from:
 - https://gitlab.com/pbarker.dev/meta-linux-mainline/-/tree/4b288396eff43fe9b1a233aed1ce9b48329a2eb6

- in-tree defconfig

```
KBUILD_DEFCONFIG = "powernv_defconfig"
KCONFIG_MODE = "alldefconfig"
```
A few attempts have been made to boot up partitioned image via Petitboot
 - created manually
 - created via wic tool
All of them failed
 - failed to mount the device by skiroot
Success with manual ISO creation so far only
 - some further investigation is needed why the wic image does not work

$ tar xf core-image-full-cmdline-talos-ii-le.tar.bz2 -C rootfs
$ mkisofs -R -o power9-image.iso rootfs
Booting image on Talos II

Return to OpenBmc

1.00 A1000640
+ 3mdeb Yocto build for PPC64

System information
System configuration
System status log
Language
Rescan devices
Retrieve config from URL
Plugins (0)
Exit to shell

Loaded kernel image from file:///var/petitboot/mnt/dev/sdb/boot/
Performing kexec load
Booting image on Talos II

Return to OpenBmc

g /var/lib/nfs/v4recovery as the NFSv4 state recovery directory
[37.175233][T474] NFSD: starting 90-second grace period (netf000001f)
done
starting mountd: done
Starting system log daemon...0
Starting crond: OK

Poky (Yocto Project Reference Distro) 3.3+snapshot-5113b3d5e7ec73
dfb1ca561424c4c574174d0dd4 talos-ii-1e hvc0

talos-ii-1e login: root
root@talos-ii-1e:~# uname -a
Linux talos-ii-1e 5.12.0 #1 SMP Sun Apr 25 20:49:08 UTC 2021 ppc64le ppc64le ppc64le GNU/Linux
root@talos-ii-1e:~# cat /etc/issue
Poky (Yocto Project Reference Distro) 3.3+snapshot-5113b3d5e7ec73
dfb1ca561424c4c574174d0dd4

root@talos-ii-1e:~#
Add machine configuration - **DONE**
Add petitboot configuration recipe - **DONE**
 - Petitboot supports grub or syslinux configs
 - maybe we should reuse that configuration instead
Select kernel provider and config - **DONE**
 - linux-mainline and powernv_defconfig
Automate creation of compatible image layout - **IN PROGRESS**
 - only ISO format worked so far
Create a proper BSP layer - **TODO**
 - should it be a separate layer or upstreamed somewhere?
Talos II patches: https://github.com/3mdeb/meta-ppc64/commits/talos-ii
• Defeating Invisible Enemies: Firmware Based Security in OpenPOWER Systems:

• Petitboot - Four Years of Linux as a Bootloader:

• Tell Me About Petitboot:
 ○ https://sthbrx.github.io/blog/2016/05/13/tell-me-about-petitboot/
We are open to cooperate and discuss

- contact@3mdeb.com
- facebook.com/3mdeb
- @3mdeb_com
- linkedin.com/company/3mdeb
- https://3mdeb.com
- Book a call
- Sign up for the newsletter

Feel free to contact us if you believe we can help you in any way. We are always open to cooperate and discuss.
Q&A