Linaro's Android Platform

LinuxCon Europe 2011

Zach Pfeffer
Linaro Android Platform Lead

Bernhard Rosenkränzer
Android Toolchain Engineer
Mission Statement

Linaro's Android platform is

- Open
- Continuously Improving
- Validated
- Easy-to-Use
- Fully-Enabled
- Optimized
- Built from the best open source components for all member boards
Achieving our Mission

Release Android builds for our member's boards

- TI
 - Panda, Beagle, Beagle xM
- Freescale
 - iMX53
- ST-Ericsson
 - Snowball
- Samsung
 - Origen
All Member Boards

Pictures and more details...
Achieving our Mission

- Produce “Android-Next” with
 - Linaro GCC 4.6
 - Linux Kernel 3.1
 - Android Platform Source 2.3.5
 - Other components (libjpeg-turbo, libpng)
 - Busybox, ffmpeg, lrzsz

- Provide a CI loop
- Accept changes through Gerrit
- Provide pre-built images
Open

- All work is submitted to its upstream
 - AOSP, kernel, GCC, vendor patches
- Instructions for building and loading builds are open and easy to use
 - Build Linaro Android from Source
 - Try a Pre-Built Build
- All builds provided without “registering”
 - http://android-build.linaro.org
Open

- **Source**
 - git://android.git.linaro.org
 - git://git.linaro.org

- **Vibrant community**
 - IRC
 - #linaro, #linaro-android on Freenode
 - The Android team will answer your questions live!
 - Mumble
 - Lists
 - linaro-dev
Continuously Improving

- Monthly milestones
 - https://launchpad.net/linaro-android/+milestone/11.06
 - 14 blueprints, 18 bugs
 - https://launchpad.net/linaro-android/+milestone/11.07
 - 12 blueprints, 7 bugs
 - https://launchpad.net/linaro-android/+milestone/11.08
 - 14 blueprints, 5 bugs
 - https://launchpad.net/linaro-android/+milestone/11.09
 - 27 blueprints, 19 bugs
 - https://launchpad.net/linaro-android/+milestone/11.10
 - 31 blueprints, 33 bugs (in progress)
Continuously Improving

- New release the last Thursday of the month
- Release Candidate available the Monday before
- Next cycle planning begins during release week
Continuously Improving

- **Toolchain Benchmarking**
 - Linaro performs monthly benchmarking tests to help gauge toolchain:
 - **Android Toolchain Benchmarks**
 - 11.09, 11.08, 11.07
 - **Comparisons are made between:**
 - Current Android NDK
 - Current month's 4.5 and 4.6 toolchains
 - Previous month's 4.6 toolchain
Continuously Improving

- Toolchain Benchmarking
 - Fully automated source available [here](#)
Validated

Continuous Integration

- Change Management
 Gerrit
- Automated Regression Testing
 LAVA (Linaro Automated Validation Architecture)
 - Monkey
 - 0xbench
 - busybox
 - mmtest
 - glmark
- Pre-merge Testing
Validated

The CI Loop
Easy-to-Use

- Trying Android on a member board should be easy
- Building Android and programming it on a member board should be easy
Try a Build
5 Commands and 1 minute

```bash
wget --no-check-certificate https://android-build.linaro.org/.../boot.tar.bz2
wget --no-check-certificate https://android-build.linaro.org/.../system.tar.bz2
wget --no-check-certificate https://android-build.linaro.org/.../userdata.tar.bz2
bzr branch lp:linaro-image-tools
./linaro-image-tools/linaro-android-media-create --mmc /dev/sdc
--dev panda
--system system.tar.bz2
--userdata userdata.tar.bz2
--boot boot.tar.bz2
```
Make and Try a Build
7 Commands (and 1 hour)

wget –no-check-certificate https://android-build.linaro.org/.../android-toolchain-eabi-linaro-4.6-...-linux-x86.tar.bz2

tar -jxvf android-toolchain-eabi-*_.tar.bz2

repo init
-u git://android.git.linaro.org/platform/manifest.git
-b linaro_android_2.3.5
-m LEB-panda.xml

repo sync

make -j4 TARGET_PRODUCT=pandaboard
TARGET_TOOLS_PREFIX=/workspace/.../arm-eabi- boottarball systemtarball userdatatarball

bzr branch lp:linaro-image-tools
./linaro-image-tools/linaro-android-media-create --mmc /dev/sdc
--dev panda
--system system.tar.bz2
--userdata userdata.tar.bz2
--boot boot.tar.bz2
Validated

- QA
 - 3 build/test sets a cycle
 - Release Candidate (RC) builds enter week-long QA cycle before final builds
 - QA Tests
Optimize

Let's make Android fast!!!
Optimize

Switched compiler flags

- **AOSP default**
 - `-O2 -fno-strict-aliasing`

- **New**
 - `-O3 -fmodulo-sched -fmodulo-sched-allow-regmoves -Wl,--hash-style=gnu -Werror=strict-aliasing`

Remove `-fno-strict-aliasing`
-O3

- Optimize for speed over code size
- Speed over compilation time
- Includes
 - finline-functions
 - funswitch-loops
 - fpredictive-commoning
 - fgcsse-after-reload
 - ftree-vectorize
 - fipa-cp-clone
Optimize

-\texttt{-fmodulo-sched -fmodulo-sched-allow-regmoves}

- Improve loop scheduling
- More info
Optimize

-Wl,--hash-style=gnu

- Improves program startup time via new hashing algorithm
- Needed to patch the AOSP dynamic linker
Optimize

Remove `-fno-strict-aliasing`

- Enables better optimizations
- Requires a stricter coding style

 Example 1

 Example 2

- Most violations can be found with `-Werror=strict-aliasing`

- Cheat!

 Override with `-fno-strict-aliasing`
Optimize

-ffast-math

- Dangerous
 - Breaks IEEE standards

- Useful in the skia 2D graphics and OpenGL libraries
Optimize

Board specific optimizations

- Cortex-A9 for Panda, Origen, Snowball
- Cortex-A8 for iMX53, Beagle, Beagle xM
Optimize

Graphite related optimizations

- fgraphite-identity
- flop-block
- flop-interchage
- flop-strip-mine
- ftree-loop-distribution
- ftree-loop-linear

Optimization effectiveness increases with better compiler SMP support
Future Improvements

- OpenMP
 API for easy multi-core parallelization
- `-ftree-parallelize-loops` for multi-core boards
 requires android-eabi toolchain
- ARM vs Thumb2
- Locate detrimental `-O3` code size
 `-fno-inline-functions` may help
- Find more `-ffast-math` compatible code
Future Improvements

- **binutils**: `-Bsymbolic-functions`
 - Speed up the dynamic linker
- **binutils/gcc**: `-flto`, `-fwhole-program`
 - Link time optimization
- **gcc**: `-fvisibility-inlines-hidden`
 - Improve start-up time
- Move to GCC 4.7
Optimize

More info here!
Thanks
All Member Boards

- TI: PandaBoard
 - OMAP4430
 - Dual Core 1 Gz Cortex-A9
 - 1 GB LPDDR2
 - 1080p@30fps
 - Encode/Decode H.264, MPEG-4, H.263
 - Decode VP6, VP7
 - DSP, IVA-HD, 2 Cortex-M3 Ducati, Audio back-end (ABE), Imaging Subsystem (ISS), SGX, Image Signal Processor (ISP), still image co-processor (SIMCOP)
- JTAG, UART, HDMI, DVI-D, Camera Connector, USB OTG/HOST, Microphone Jack, Headphone Jack, 10/100 Ethernet
All Member Boards

- **TI: BeagleBoard**
- **OMAP3530**
 - 720 Mhz Cortex-A8
- **110 MHz SGX**
- **256 MB NAND, 256MB DDR @ 166 MHz**
- **JTAG, UART, DVI-D, USB OTG/HOST, Microphone Jack, Headphone Jack**

http://beagleboard.org/static/BBSRM_latest.pdf
All Member Boards

- TI: BeagleBoard xM
- DM373
 - 1 GHz Cortex-A8
- 200 MHz SGX
- 512 MB DDR @ 166MHz
- JTAG, UART, DVI-D, USB OTG/HOST, Microphone Jack, Headphone Jack, 10/100 Ethernet

http://beagleboard.org/static/BBSRM_latest.pdf
All Member Boards

- Freescale: i.MX53 Quick Start
 - i.MX53
 - 1 GHz ARM Cortex™-A8
 - 1 GB DDR3
 - SGTL5000 Audio Codec
 - HDMI, camera connector SATA, 10/100 Ethernet, Microphone Jack, Headphone Jack
 - 3D Accelerometer
 - I2C, SSI, SPI
All Member Boards

- **ST-Ericsson: Snowball**
 - Nova A9500
 - Dual Cortex 1 GHz Cortex-A9 with Advanced SIMD (Neon) Extensions
- Mali-400 GPU
- 1080p
- 1 GB of DDR2
- HDMI, WLAN, Bluetooth, USB OTG, 10/100 Ethernet
- 3D Accelerometer, 3D Magnetometer, 3D Gyroscope, Barometer
All Member Boards

- Samsung: ‘Origen’ low cost development board
 - Exynos4210
 - Dual Core 1 GHz Cortex-A9 with Advanced SIMD (Neon) Extensions
 - Mali400 MP4 GPU
 - 1080p@30fps Hardware Decode of
 - 1GB of High Bandwidth DDR3
 - HDMI, WLAN, Bluetooth, Camera Connector, USB 2.0 OTG/HOST, SD/MMC
 - 8ch, I2C, SATA, PCI Express

http://www.linaro.org/assets/PDF/LinaroOrigenLowCostBoard.pdf
Some Interesting Results

- **0xbench 3-D**
 - Across all boards
 - Across all builds
Panda 0xbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.04</td>
<td>AOSP 4.4</td>
<td>2.6.38.3</td>
<td>2.3.3</td>
</tr>
<tr>
<td>11.05</td>
<td>AOSP 4.4</td>
<td>2.6.35.7</td>
<td>2.3.3</td>
</tr>
<tr>
<td>11.06</td>
<td>Linaro 4.5</td>
<td>2.6.38.7</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.07</td>
<td>Linaro 4.6</td>
<td>3.0.0</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>3.0.0</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>3.0.3</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>3.0.4</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
Panda 0xbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.04</td>
<td>AOSP 4.4</td>
<td>2.6.38.3</td>
<td>2.3.3</td>
</tr>
<tr>
<td>11.05</td>
<td>AOSP 4.4</td>
<td>2.6.35.7</td>
<td>2.3.3</td>
</tr>
<tr>
<td>11.06</td>
<td>Linaro 4.5</td>
<td>2.6.38.7</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.07</td>
<td>Linaro 4.6</td>
<td>3.0.0</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>3.0.0</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>3.0.3</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>3.0.4</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
iMX53 0xbench 3-D Test Result

Build	Toolchain	Kernel	Android
11.08 | Linaro 4.6 | 2.6.38.7 | 2.3.5 |
11.09 | Linaro 4.6 | 2.6.38.7 | 2.3.5 |
11.10 | Linaro 4.6 | 2.6.38.7 | 2.3.5 |
Origen 0xbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>3.0.3</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>3.0.3</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>3.0.4</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
Snowball Oxbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.07</td>
<td>Linaro 4.6</td>
<td>3.0.0-rc7</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>3.0.0-rc7</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>3.0.0-rc7</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>3.0.0-rc7</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
Results

- Slowdowns
 - TARGET_CPU_SMP increases locking overhead
 - GCC 4.6 performance regressions
 - Using Linaro Android build parameterization to track down regressions
Linaro's Android Platform

LinuxCon Europe 2011

Zach Pfeffer
Linaro Android Platform Lead

Bernhard Rosenkränzer
Android Toolchain Engineer
Mission Statement

Linaro's Android platform is

- Open
- Continuously Improving
- Validated
- Easy-to-Use
- Fully-Enabled
- Optimized
- Built from the best open source components for all member boards
Achieving our Mission

Release Android builds for our member's boards

- TI
 - Panda, Beagle, Beagle xM
- Freescale
 - iMX53
- ST-Ericsson
 - Snowball
- Samsung
 - Origen
All Member Boards

Pictures and more details...
Achieving our Mission

- Produce “Android-Next” with
 - Linaro GCC 4.6
 - Linux Kernel 3.1
 - Android Platform Source 2.3.5
 - Other components (libjpeg-turbo, libpng)
 - Busybox, ffmpeg, lrzsz
- Provide a CI loop
- Accept changes through Gerrit
- Provide pre-built images
Open

- All work is submitted to its upstream
 - AOSP, kernel, GCC, vendor patches
- Instructions for building and loading builds are open and easy to use
 - Build Linaro Android from Source
 - Try a Pre-Built Build
- All builds provided without “registering”
 - http://android-build.linaro.org
Open

• Source
 • git://android.git.linaro.org
 • git://git.linaro.org
• Vibrant community
 • IRC
 - #linaro, #linaro-android on Freenode
 - The Android team will answer your questions live!
 • Mumble
 • Lists
 linaro-dev
Continuously Improving

- Monthly milestones
 - https://launchpad.net/linaro-android/+milestone/11.06
 14 blueprints, 18 bugs
 - https://launchpad.net/linaro-android/+milestone/11.07
 12 blueprints, 7 bugs
 - https://launchpad.net/linaro-android/+milestone/11.08
 14 blueprints, 5 bugs
 - https://launchpad.net/linaro-android/+milestone/11.09
 27 blueprints, 19 bugs
 - https://launchpad.net/linaro-android/+milestone/11.10
 31 blueprints, 33 bugs (in progress)
Continuously Improving

- New release the last Thursday of the month
- Release Candidate available the Monday before
- Next cycle planning begins during release week
Continuously Improving

- Toolchain Benchmarking
 - Linaro performs monthly benchmarking tests to help gauge toolchain:
 - Android Toolchain Benchmarks
 - 11.09, 11.08, 11.07
 - Comparisons are made between:
 - Current Android NDK
 - Current month's 4.5 and 4.6 toolchains
 - Previous month's 4.6 toolchain
Continuously Improving

- Toolchain Benchmarking
 - Fully automated source available [here](#)
Validated

Continuous Integration
- Change Management
 Gerrit
- Automated Regression Testing
 LAVA (Linaro Automated Validation Architecture)
 - Monkey
 - 0xbench
 - busybox
 - mmtest
 - glmark
- Pre-merge Testing
Validated

The CI Loop
Easy-to-Use

- Trying Android on a member board should be easy
- Building Android and programming it on a member board should be easy
Try a Build

5 Commands and 1 minute

wget --no-check-certificate https://android-build.linaro.org/.../boot.tar.bz2

wget --no-check-certificate https://android-build.linaro.org/.../system.tar.bz2

wget --no-check-certificate https://android-build.linaro.org/.../userdata.tar.bz2

bzr branch lp:linaro-image-tools

./linaro-image-tools/linaro-android-media-create --mmc
/dev/sdc
--dev panda
--system system.tar.bz2
--userdata userdata.tar.bz2
--boot boot.tar.bz2
Make and Try a Build
7 Commands (and 1 hour)

wget --no-check-certificate https://android-build.linaro.org/.../android-toolchain-eabi-linaro-4.6-...-linux-x86.tar.bz2
tar -jxvf android-toolchain-eabi-*tar.bz2
repo init
- u git://android.git.linaro.org/platform/manifest.git
- b linaro.android_2.3.5
- m LEB-panda.xml
repo sync
make -j4 TARGET_PRODUCT=pandaboard
TARGET_TOOLS_PREFIX=/workspace/.../arm-eabi- boot tarball system tarball
userdata tarball
bzr branch lp:linaro-image-tools
./linaro-image-tools/linaro-android-media-create -mmc/dev/sdc
--dev panda
--system system.tar.bz2
--userdata userdata.tar.bz2
--boot boot.tar.bz2
Validated

- QA
 - 3 build/test sets a cycle
 - Release Candidate (RC) builds enter week-long QA cycle before final builds
 - QA Tests
Optimize

Let's make Android fast!!!
Optimize

Switched compiler flags

- AOSP default
 -O2 -fno-strict-aliasing
- New
 -O3 -fmodular-sched -fmodular-sched-allow-removes -Wl,---hash-style=gnu -Werror=strict-aliasing
 Remove -fno-strict-aliasing
Optimize

-O3

- Optimize for speed over code size
- Speed over compilation time
- Includes
 - finline-functions
 - funswitch-loops
 - fpredictive-commoning
 - fgcse-after-reload
 - ftree-vectorize
 - fipa-cp-clone
Optimize

-ffmodeso-sched -ffmodos-sched-allow-regmoves
- Improve loop scheduling
- More info
Optimize

-Wl,--hash-style=gnu

- Improves program startup time via new hashing algorithm
- Needed to patch the AOSP dynamic linker
Optimize

Remove -fno-strict-aliasing

- Enables better optimizations
- Requires a stricter coding style

Example 1
Example 2

- Most violations can be found with
 -Werror=strict-aliasing

- Cheat!
 Override with -fno-strict-aliasing
Optimize

-ffast-math

- Dangerous
 - Breaks IEEE standards
- Useful in the skia 2D graphics and OpenGL libraries
Optimize

Board specific optimizations

- Cortex-A9 for Panda, Origen, Snowball
- Cortex-A8 for iMX53, Beagle, Beagle xM
Optimize

Graphite related optimizations
 - fgraphite-identity
 - floop-block
 - floop-interchage
 - floop-strip-mine
 - ftree-loop-distribution
 - ftree-loop-linear

Optimization effectiveness increases with better compiler SMP support
Future Improvements

- OpenMP
 API for easy multi-core parallelization
- -ftree-parallelize-loops for multi-core boards
 requires android-eabi toolchain
- ARM vs Thumb2
- Locate detrimental -O3 code size
 -fno-inline-functions may help
- Find more -ffast-math compatible code
Future Improvements

- binutils: -Bsymbolic-functions
 - Speed up the dynamic linker
- binutils/gcc: -flto, -fwhole-program
 - Link time optimization
- gcc: -fvisibility-inlines-hidden
 - Improve start-up time
- Move to GCC 4.7
Optimize

More info here!
Thanks
All Member Boards

- TI: PandaBoard
 - OMAP4430
 - Dual Core 1 Gz Cortex-A9
 - 1 GB LPDDR2
 - 1080p@30fps
 - Encode/Decode H.264, MPEG-4, H.263
 - Decode VP6, VP7
 - DSP, IVA-HD, 2 Cortex-M3 Ducati, Audio back-end (ABE), Imaging Subsystem (ISS), SGX, Image Signal Processor (ISP), still image co-processor (SIMCOP)
- JTAG, UART, HDMI, DVI-D, Camera Connector, USB OTG/HOST, Microphone Jack, Headphone Jack, 10/100 Ethernet
All Member Boards

- TI: BeagleBoard
 - OMAP3530
 - 720 Mhz Cortex-A8
 - 110 MHz SGX
 - 256 MB NAND, 256MB DDR @ 166 MHz
 - JTAG, UART, DVI-D, USB OTG/HOST, Microphone Jack, Headphone Jack

http://beagleboard.org/static/BBSRM_latest.pdf
All Member Boards

- TI: BeagleBoard xM
- DM373
 - 1 GHz Cortex-A8
- 200 MHz SGX
- 512 MB DDR @ 166MHz
- JTAG, UART, DVI-D, USB OTG/HOST, Microphone Jack, Headphone Jack, 10/100 Ethernet

http://beagleboard.org/static/BBSRM_latest.pdf
All Member Boards

- Freescale: i.MX53 Quick Start
 - i.MX53
 - 1 GHz ARM Cortex™-A8
 - 1 GB DDR3
 - SGTL5000 Audio Codec
 - HDMI, camera connector SATA, 10/100 Ethernet, Microphone Jack, Headphone Jack
- 3D Accelerometer
- I2C, SSI, SPI
All Member Boards

- ST-Ericsson: Snowball
 - Nova A9500
 - Dual Cortex 1 GHz Cortex-A9 with Advanced SIMD (Neon) Extensions
 - Mali-400 GPU
 - 1080p
 - 1 GB of DDR2
 - HDMI, WLAN, Bluetooth, USB OTG, 10/100 Ethernet
 - 3D Accelerometer, 3D Magnetometer, 3D Gyroscope, Barometer
All Member Boards

- Samsung: ‘Origen’ low cost development board
 - Exynos4210
 - Dual Core 1 GHz Cortex-A9 with Advanced SIMD (Neon) Extensions
 - Mali400 MP4 GPU
 - 1080p@30fps Hardware Decode of
 - 1GB of High Bandwidth DDR3
 - HDMI, WLAN, Bluetooth, Camera Connector, USB 2.0 OTG/HOST, SD/MMC
 - 8ch, I2C, SATA, PCI Express

http://www.linaro.org/assets/PDF/LinaroOrigenLowCostBoard.pdf
Some Interesting Results

- 0xbench 3-D
 - Across all boards
 - Across all builds
Panda 0xbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.04</td>
<td>AOSP 4.4</td>
<td>2.6.38</td>
<td>2.3.3</td>
</tr>
<tr>
<td>11.05</td>
<td>AOSP 4.4</td>
<td>2.6.35.7</td>
<td>2.3.3</td>
</tr>
<tr>
<td>11.06</td>
<td>Linaro 4.5</td>
<td>2.6.38.7</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.07</td>
<td>Linaro 4.6</td>
<td>3.0.0</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>3.0.0</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>3.0.3</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>3.0.4</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
Panda 0xbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.04</td>
<td>AOSP 4.4</td>
<td>2.6.38.3</td>
<td>2.3.3</td>
</tr>
<tr>
<td>11.05</td>
<td>AOSP 4.4</td>
<td>2.6.35.7</td>
<td>2.3.3</td>
</tr>
<tr>
<td>11.06</td>
<td>Linaro 4.5</td>
<td>2.6.38.7</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.07</td>
<td>Linaro 4.6</td>
<td>3.0.0</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>3.0.0</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>3.0.3</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>3.0.4</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
iMX53 0xbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>2.6.38.7</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>2.6.38.7</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>2.6.38.7</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
Origen 0xbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>3.0.3</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>3.0.3</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>3.0.4</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
Snowball 0xbench 3-D Test Result

<table>
<thead>
<tr>
<th>Build</th>
<th>Toolchain</th>
<th>Kernel</th>
<th>Android</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.07</td>
<td>Linaro 4.6</td>
<td>3.0.0-rc7</td>
<td>2.3.4</td>
</tr>
<tr>
<td>11.08</td>
<td>Linaro 4.6</td>
<td>3.0.0-rc7</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.09</td>
<td>Linaro 4.6</td>
<td>3.0.0-rc7</td>
<td>2.3.5</td>
</tr>
<tr>
<td>11.10</td>
<td>Linaro 4.6</td>
<td>3.0.0-rc7</td>
<td>2.3.5</td>
</tr>
</tbody>
</table>
Results

- Slowdowns
 - TARGET_CPU_SMP increases locking overhead
 - GCC 4.6 performance regressions
 - Using Linaro Android build parameterization to track down regressions