Methods to protect proprietary
components in device drivers

Matt Porter

Embedded Alley Solutions, Inc.

Embedded Alley



Introduction

Why the interest in closed drivers on Linux?
Competition
Advantage perception
Upsell
Policy

Disadvantages of closed drivers

Can't move upstream
Lack of review
No 3" party bug fixes
FOSS alternatives will be preferred
User forced to rely on vendor updates

Embedded Alley



Implementing a closed driver

Why not take the easy route?
Binary modules

Not really easy
Don't forget EXPORT_SYMBOL GPL

What are the risks?
Legal
Many legal opinions against binary only modules

Community
Unpopularity of binary only modules

Embedded Alley



Implementing a closed driver

User-space drivers
Low legal risk
Unaffected by EXPORT SYMBOL_GPL

A lot of infrastructure is available

Mmap()
Select()/Poll()/Read()
UlO

Embedded Alley



The approach

Design the driver properly
Driver can be split into kernel and user portions

Kernel portion has

Memory alloc/free
Bootmem, kmalloc, dma_alloc*()

Exports access to registers

Provides address translation information for memory
regions.

Top-half interrupt handling

Embedded Alley



The approach

User portion has
Driver specific memory management of kernel allocat-

ed regions
DMA buffers

Register access
Bottom-half interrupt handling

User-space portion can be distributed in binary
form as with any application.

Embedded Alley



Register Access

Mmap()
Kernel portion exports all necessary register re-
gions
Pgprot_*() settings are critical
User portion uses mmap() to map all register re-
gions into user address space for direct access.

Embedded Alley



Memory Allocation

Devices often have specific buffer character-

Istic requirements
Physically contiguous
Alignment restrictions

Allocate memory in the kernel portion using
appropriate kernel allocation technique
User portion may manage subsections of a
larger contiguous allocation as need.

Embedded Alley



Managing DMA

Use of kernel side memory allocation as de-
scribed

Kernel driver portion provides information
on bus addresses and cache mode of
memory allocations.

User driver portion implements buffer cache
management routines as required by buffer
cache mode.

Embedded Alley



Handling Interrupts

Kernel driver handles interrupt work that
must be done at all costs (error handling,
etc.)

User driver handles the interrupt workload
User interrupt event signaled by kernel driv-
er by unblocking a system call (read() or
ioctl())

Embedded Alley



Role of UIO

Mainline kernel user-space driver infrastruc-

ture

Provides
Standard kernel side driver infrastructure for user-
space driver clients
Interrupt event notification
Standardized access to multiple memory regions via
mmap().

Does not have
DMA support

Hooks for specialized buffer allocation
on demand allocation
Large physically contiguous allocations
Alignment restrictions

Cache mode and bus address information

Embedded Alley



GPU Driver — Introduction

Production user-space driver example

Platform
ARM926-based SoC with GPU

Goal
Port an existing OpenGL ES and GPU driver im-
plementation from an RTOS to Linux

Embedded Alley



GPU Driver — Requirements

Top performance
Deliver functional and accelerated OpenGL ES
on Linux as fast as possible

Maintain common code base with RTOS imple-
mentation

Driver must be kept proprietary

Embedded Alley



GPU Driver — RTOS implementa-
tion

OpenGL ES library and GPU driver are
tightly coupled

Assumes 1:1 mapping of bus and virtual
addresses for GPU DMA buffer manage-
ment

Manages interrupt hardware directly

Embedded Alley



GPU Driver — Linux Implementa-
tion

Linear FB driver exists already
Allocate contiguous GPU memory space from
FB driver (cmdline options to control size)
mmap() access to base regs, gpu regs, linear
FB mem, and GPU mem
joctl provides memory region offset info and
physical address of GPU mem.
Driver handles GPU irqg error events and pro-
vides irq events via a FB driver specific ioctl

Embedded Alley



GPU Driver — Linux Implementation

Original GPU driver now lives in Linux user-

space
Extended with OS init routine to provide GPU
memory virtual and bus address base.
Translation function used to convert buffer ad-
dress to bus address.
User-space DMA buffer allocator manages ker-
nel-allocated GPU mem pool
GPU command list complete interrupt handled
using ioctl event notification.

Embedded Alley



GPU Driver — Results

Automobile model render demo
60 FPS
30% CPU




User-space driver future

UIO is a good start

UIO primarily needs support for DMA to en-

able a broader range of drivers
Driver-specific memory allocation and region
characteristic info

Plan is to convert this driver to a UIO driver

with DMA helper extensions
Some thought still required on how to properly

abstract these extensions
Need an open user-space DMA driver example

to help drive acceptance of any extensions.

Embedded Alley



Conclusions

User-space drivers aren't just for simple au-

tomation drivers
With proper design, DMA-driven devices

can be supported in user-space

Embedded Alley



QE&A

Questions?

Embedded Alley



