
Methods to protect proprietary 
components in device drivers

Matt Porter

Embedded Alley Solutions, Inc.



Introduction

➲ Why the interest in closed drivers on Linux?
● Competition

● Advantage perception
● Upsell
● Policy

➲ Disadvantages of closed drivers
● Can't move upstream

● Lack of review
● No 3rd party bug fixes
● FOSS alternatives will be preferred

● User forced to rely on vendor updates



Implementing a closed driver

➲ Why not take the easy route?
● Binary modules
● Not really easy

● Don't forget EXPORT_SYMBOL_GPL
➲ What are the risks?

● Legal
● Many legal opinions against binary only modules

● Community
● Unpopularity of binary only modules



Implementing a closed driver

➲ User-space drivers
● Low legal risk
● Unaffected by EXPORT_SYMBOL_GPL
● A lot of infrastructure is available

● Mmap()
● Select()/Poll()/Read()
● UIO



The approach

➲ Design the driver properly
● Driver can be split into kernel and user portions
● Kernel portion has

● Memory alloc/free
● Bootmem, kmalloc, dma_alloc*()

● Exports access to registers
● Provides address translation information for memory 

regions. 
● Top-half interrupt handling



The approach

● User portion has
● Driver specific memory management of kernel allocat-

ed regions
● DMA buffers

● Register access
● Bottom-half interrupt handling

● User-space portion can be distributed in binary 
form as with any application.



Register Access

➲ Mmap()
● Kernel portion exports all necessary register re-

gions
● Pgprot_*() settings are critical

● User portion uses mmap() to map all register re-
gions into user address space for direct access.



Memory Allocation

➲ Devices often have specific buffer character-
istic requirements

● Physically contiguous
● Alignment restrictions

➲ Allocate memory in the kernel portion using 
appropriate kernel allocation technique

➲ User portion may manage subsections of a 
larger contiguous allocation as need.



Managing DMA

➲ Use of kernel side memory allocation as de-
scribed

➲ Kernel driver portion provides information 
on bus addresses and cache mode of 
memory allocations.

➲ User driver portion implements buffer cache 
management routines as required by buffer 
cache mode.



Handling Interrupts

➲ Kernel driver handles interrupt work that 
must be done at all costs (error handling, 
etc.)

➲ User driver handles the interrupt workload
➲ User interrupt event signaled by kernel driv-

er by unblocking a system call (read() or 
ioctl())



Role of UIO

➲ Mainline kernel user-space driver infrastruc-
ture

● Provides
● Standard kernel side driver infrastructure for user-

space driver clients
● Interrupt event notification
● Standardized access to multiple memory regions via 

mmap().
● Does not have

● DMA support
● Hooks for specialized buffer allocation

● on demand allocation
● Large physically contiguous allocations
● Alignment restrictions

● Cache mode and bus address information



GPU Driver – Introduction

➲ Production user-space driver example
➲ Platform

● ARM926-based SoC with GPU
➲ Goal

● Port an existing OpenGL ES and GPU driver im-
plementation from an RTOS to Linux



GPU Driver – Requirements

● Top performance
● Deliver functional and accelerated OpenGL ES 

on Linux as fast as possible
● Maintain common code base with RTOS imple-

mentation
● Driver must be kept proprietary



GPU Driver – RTOS implementa-
tion

➲ OpenGL ES library and GPU driver are 
tightly coupled

➲ Assumes 1:1 mapping of bus and virtual 
addresses for GPU DMA buffer manage-
ment

➲ Manages interrupt hardware directly



GPU Driver – Linux Implementa-
tion

➲ Linear FB driver exists already
● Allocate contiguous GPU memory space from 

FB driver (cmdline options to control size)
● mmap() access to base regs, gpu regs, linear 

FB mem, and GPU mem
● ioctl provides memory region offset info and 

physical address of GPU mem.
● Driver handles GPU irq error events and pro-

vides irq events via a FB driver specific ioctl



GPU Driver – Linux Implementation

➲ Original GPU driver now lives in Linux user-
space

● Extended with OS init routine to provide GPU 
memory virtual and bus address base.

● Translation function used to convert buffer ad-
dress to bus address.

● User-space DMA buffer allocator manages ker-
nel-allocated GPU mem pool

● GPU command list complete interrupt handled 
using ioctl event notification.



GPU Driver – Results
➲ Automobile model render demo

● 60 FPS
● 30% CPU



User-space driver future

➲ UIO is a good start
➲ UIO primarily needs support for DMA to en-

able a broader range of drivers
● Driver-specific memory allocation and region 

characteristic info
➲ Plan is to convert this driver to a UIO driver 

with DMA helper extensions
● Some thought still required on how to properly 

abstract these extensions
● Need an open user-space DMA driver example 

to help drive acceptance of any extensions.



Conclusions

➲ User-space drivers aren't just for simple au-
tomation drivers

➲ With proper design, DMA-driven devices 
can be supported in user-space



Q&A

➲ Questions?


