
Understand USB (in Linux)

Krzysztof Opasiak

Samsung R&D Institute Poland



Agenda

What USB is about?

Plug and Play

How BadUSB works?

May I have my own USB device?

Q & A

1



What USB is about?



What USB is about?

It is about providing services!

• Storage

• Printing

• Ethernet

• Camera

• Any other

3



How we connect them?

4



Logical vs physical topology

Physical
Logical

5



What is USB device?

• Piece of hardware for USB communication

• USB protocol implementation

• Some useful protocol implementation

• Piece of hardware/software for providing desired functionality

6



Endpoints…

• Device may have up to 31 endpoints

(including ep0)

• Each of them gets a unique Endpoint address

• Endpoint 0 may transfer data in both directions

• All other endpoints may transfer data in one direction:

IN Transfer data from device to host

OUT Transfer data from host to device

7



Endpoint types

• Control

• Bi-directional endpoint

• Used for enumeration

• Can be used for application

• Interrupt

• Transfers a small amount of low-latency data

• Reserves bandwidth on the bus

• Used for time-sensitive data (HID)

8



Endpoint types

• Bulk

• Used for large data transfers

• Used for large, time-insensitive data

(Network packets, Mass Storage, etc).

• Does not reserve bandwidth on bus, uses whatever time is left over

• Isochronous

• Transfers a large amount of time-sensitive data

• Delivery is not guaranteed (no ACKs are sent)

• Used for Audio and Video streams

• Late data is as good as no data

• Better to drop a frame than to delay and force a re-transmission

9



USB device

10



USB bus - low level

• USB is a Host-controlled bus

• Nothing on the bus happens without the host first initiating it.

• Devices cannot initiate any communication.

• The USB is a Polled Bus.

• The Host polls each device, requesting data or sending data.

11



Plug and Play



Step by step

• Plug in device

• Detect Connection

• Set address

• Get device info

• Choose configuration

• Choose drivers for interfaces

• Use it ;)

13



Set address

• On plug-in device use default address 0x00

• Only one device is enumerated at once

• Hosts assigns unique address for new device

14



Get device info

• Each USB world entity is described by data structure called

descriptor

• Descriptors have different types, sizes and content

• But they all have a common header

Field Size Value Description

bLength 1 Number Size of the Descriptor in Bytes

bDescriptorType 1 Constant Device Descriptor (0x01)

<data> bLength - 2 NA Payload

15



USB descriptors

16



USB classes
00h Device Use class information in the Interface Descriptors

01h Interface Audio

02h Both Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

10h Interface Audio/Video Devices

11h Device Billboard Device Class

DCh Both Diagnostic Device

E0h Interface Wireless Controller

EFh Both Miscellaneous

FEh Interface Application Specific

FFh Both Vendor Specific

17



Device Info Summary

• Host gets info about new devices from suitable USB descriptors

• Most important data at this moment:

• idVendor

• idProduct

• bcdDevice

• bDeviceClass

• bDeviceSubClass

• bDeviceProtocol

• bMaxPower

• bInterfaceClass

• bInterfaceSubClass

• bInterfaceProtocol

18



Set Configuration

• Which configuration is the most suitable?

• We have enough power for it (bMaxPower?)

• It has at least one interface

• If device has only one config just use it

• Choose the one which first interface is not Vendor specific

• All interfaces of choosen configuration becomes enabled so let's

use them

19



What USB driver really is?

• Piece of kernel code

• Usually provides something to userspace

(network interface, tty, etc.)

• Implementation of some communication protocol

20



How to choose a suitable driver?

• struct usb_driver

• When device needs special handling:

• Using VID and PID and interface id

• Driver probe()s for each interface in device that match VID and PID

• When driver implements some well defined, standardized
protocol

• Using bInterfaceClass, bInterfaceSubClass etc.

• Driver probe() for each interface which has suitable identity

• No matter what is the VID and PID

• Driver will not match if interface hasn't suitable class

21



Big picture

22



What's next?

• We have the driver which provides something to userspace but

what's next?

• It depends on interface type:

• Network devices - Network manager should handle new interface setup

• Pendrives, disks etc - automount service should mount new block device

• Mouse, keyboard - X11 will start listening for input events

• And many many other things are going to be handled AUTOMATICALLY

• without any user action…

23



How BadUSB works?



USB security summary

• Between plug in and start using there is no user interaction

• Drivers are probed automatically

• Userspace starts using new device automatically

• Device introduce itself as it wants

• There is no relation between physical outfit and descriptors

25



My beautiful tablet

26



BadUSB attack scenario

• User connect hacked device

• Device looks like pendrive, tablet…

• But sends descriptor taken from some keyboard

• And implements HID protocol

• Kernel creates new input source

• and X11 just starts using them

27



How dangerous it is?

• I just downloaded image and changed the background but what

else it can do?

• There is a version of this attack which spoofs DNS on host and

redirects them to USB device

• Any command which doesn't require sudo can be executed

• anything!

• anything!

• anything!

28



How to protect?

• Don't connect unknown devices found on a street

• Limit number of input source to X11

• Use device/interface authorization

• usbguard

• gnome solution

29



Device/interface authorization

• Each USB device has authorized attribute in sysfs directory

• Each HCD has authorized_default entry in sysfs

• If we set this to false each new device on this bus will be

unauthorized by default

• Drivers will not be able to bind to it

• This gives us time to use lsusb to check it

30



My tablet (once again)

31



May I have my own USB device?



Yes, you can!

Need Solution

Suitable hardware Get some board with UDC controller

(BBB, Odroid etc.)

Implementation of USB protocol Use one from Linux kernel!

Implementation of some useful

protocol

A lot of protocols are available out of

the box in Linux kernel!

Desired functionality provider Let's use our system infrastructure!

33



Terminology
USB device = USB gadget + UDC

UDC driver Driver for USB Device Controller

USB function (type) driver which implements some useful protocol (HID,

Mass storage)

USB gadget Glue layer for functions.

• Handle enumeration

• Respond to most general requests

34



Device architecture overview

35



Prerequisites - menuconfig

36



Available functions
• Ethernet

• ECM
• EEM
• NCM
• Subset

• RNDIS

• Serial

• ACM
• Serial

• OBEX

• Mass Storage

• HID

• UVC

• UAC

• Printer

• Phonet

• Loopback and SourceSink

37



Base composition

• Fill the identity of gadget

• Vendor ID

• Product ID

• Device Class details

• Strings (manufacturer, product and serial)

• Decide what functions

• Decide how many configurations

• Decide what functions are available

in each configuration

38



But how to do this?

• Use bare kernel ConfigFS interface

Documentation/ABI/testing/configfs-usb-gadget*
• Use libusbgx to create a program

https://github.com/libusbgx/libusbgx
• Use gt to create a simple script

https://github.com/kopasiak/gt
• Use gt to load gadget scheme

39

Documentation/ABI/testing/configfs-usb-gadget*
https://github.com/libusbgx/libusbgx
https://github.com/kopasiak/gt


What gadget schemes really are?

• Declarative gadget description

• Simple configuration file

• libconfig syntax

• Interpreted by libusbgx

• Can be easily loaded using gt load

attrs = {
idVendor = 0x1D6B
idProduct = 0xe1ce

}
strings = ({

lang = 0x409;
manufacturer = "Linux␣Kernel"
product = "Sample␣gadget"
serialnumber = "ELC2016"

})
functions = {

our_net = {
instance = "net1"
type = "ecm"

}
}
configs = ({

id = 1
name = "c"
strings = ({

lang = 0x409
configuration = "The␣only␣one"

})
functions = ("our_net")

})

40



Let's compose some device

41



Q & A



Thank you!

Krzysztof Opasiak
Samsung R&D Institute Poland

+48 605 125 174

k.opasiak@samsung.com

43



References

• Tame The USB gadgets Talkative Beast, Krzysztof Opasiak

• Make your own USB gadget, Andrzej Pietrasiewicz

• USB and the Real World, Alan Ott

• USB in a Nutshell

• USB specification

• BadUSB attack

• usbguard

• libubsgx

• gt

44

http://events.linuxfoundation.org/sites/events/files/slides/Tame_the_USB_gadgets_takative_beast_Opasiak_Krzysztof_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/LinuxConNA-Make-your-own-USB-gadget-Andrzej.Pietrasiewicz.pdf
http://events.linuxfoundation.org/sites/events/files/slides/elc_2014_usb_0.pdf
http://www.beyondlogic.org/usbnutshell/usb1.shtml
http://www.usb.org/developers/docs/usb20_docs/
https://srlabs.de/badusb/
https://github.com/dkopecek/usbguard
https://github.com/libusbgx/libusbgx
https://github.com/kopasiak/gt

	What USB is about?
	Plug and Play
	How BadUSB works?
	May I have my own USB device?
	Q & A

