
<#>

2006/8/1

Linux Symposium
BOF

CABI (CPU Accounting and Blocking Interfaces)
CPU Resource Management System in Embedded Linux

Midori Sugaya1, Tohru Nojiri2, Takaaki Kasuga3, Takeharu Kato
Waseda University1, Hitachi2, Lineo Solutions3

doly @dcl.info.waseda.ac.jp

2006/8/1

2

Linux Symposium BOF

Requirements for embedded system
• Advanced embedded system

▫ Expansion of application field
Complication GUI, Network

▫ More complicated, grow up code sizes
Car navigation system, cellular telephone, digital TV

• The requirements of embedded system
▫ Real-time

Multimedia applications
In order to process video, audio streams, it needs soft real-time control.
Even in overload condition, predictable control is necessary for them.

▫ Responsiveness
Key inputs

Even if the multimedia applications are running in the foreground, the
responsiveness is required.

▫ Avoid CPU occupation
Real-time applications

In case of the download, the programs would be buggy or malicious,
they will use up the whole system resources,
Resource protection mechanism is needed especially for real-time
applications

• Appropriate CPU resource management system is needed

<#>

07/29/06

3

Linux Symposium BOF

policy contents priorities

Real-time SCHED_FIFO First in first out 0-99

SCHED_RR Round robin

Time-sharing SCHED_OTHER Time-sharing 100-139

0

MAX_PRIO
140

100

139

USER_PRIO
Real-time

OTHERS
Time-sharing Default policy is timesharing

RT scheduling policies are used with system call.

Real-time process
0-99

Real-time (static priority)
Static Priority (POSIX 1003.1b)

Time-sharing (dynamic priority)
At regular time interval (time slice)
Switch processes compared with their priorities
Priority is decided by the execution＋sleep time
Set higher priority to the interactive process

Linux Scheduling policies

Time-sharing process
100-139

• Purpose
▫ Provide a framework for the CPU resource management

• Approach
▫ Control the consumptions of the CPU resources quantitatively

CPU should be limited for each application or application groups
e.g.) The audio video application 60%

The downloaded applications 40%

• Design policy
▫ Fine-grained

With High Resolution Timer
▫ Simple

Easy to use the interfaces and services

▫ Independent from the scheduler
Not change the Linux scheduler

CABI (CPU Accounting and Blocking Interfaces)

Applications
Mailer

Browser

MPEG

Game

Audio &
Video

Application

60%

Downloaded
Applications

40%

<#>

2006/8/1

5

Linux Symposium BOF

Accounting model

• Two parameters : T (period), C (computation time)
▫ needed to control the execution time of the application

▫ Process or process group can not excessively use the CPU resources
than their proportion

Period (T)

Computation
time (C)

Process

forcible Preempt

ms

30%

e.g. C=30ms, T=100ms

Computation time
Period

Ｘ 100The CPU usage (%) =

0 30 100

System Architecture

Accounting API Library
User
Mode

Enforcement Timer

System Call Interfaces Kernel
Mode

Replenishment Timer

callback hooks

Process Process Process

Timer Management Functions

System Call Interfaces Kernel

Process Process Process

CABI

Process Management System

Timer
ISR

schedule fork exit

Linux Kernel

Process Management System

Timer
ISR

schedule fork exit

overload
AOAOAOAO

• Interfaces
▫ Accounting API Library
▫ System Call Interfaces

• Functions
▫ Timer Management
▫ AO Management

• It independent from the kernel
▫ Only a few hooks

Schedule, fork, exit
ISR

<#>

2006/8/1

7

Linux Symposium BOF

Guaranteed responsiveness is required for TS applications

• CABI provides a framework for building real-time system
▫ Set appropriate priorities for real-time applications

By using algorithms like Rate Monotonic, EDF, with admission control
Developer can give guarantees for real-time applications

• There are no guarantees for time-sharing applications
▫ Recently, embedded developers are tend to use the time-sharing

(normal) to develop a new embedded application
Because no need to adjust their priorities

▫ Time-sharing applications can’t get responsiveness
If real-time application is running in foreground
The priorities of time-sharing are always lower than the real-time
applications
▫ Linux scheduler constraints

Need a function to set higher priorities and guarantee them to use
some resource

2006/8/1

8

Linux Symposium BOF

CPU Reservation

• Priority Boost approach
▫ Time-sharing processes are boosted temporarily to real-time

processes, and minimum resource is reserved
▫ CPU resource to a particular process which takes care of GUI
▫ Responsibility of time-sharing process is increased

Guaranteed
Lower Limit Time

Boost Period

Real-time
Process

Period

Limitation of
execution time

Time-sharing
Process

High Priority

Low Priority

RT Block NormalBoost

Real-time
Process

Timesharing
Process

High Priority

Low
Priority

Real-time Process
Time-sharing Process a
Time-sharing Process b
Time-sharing Process c

<#>

2006/8/1

9

Linux Symposium BOF

Conclusion

• Background
▫ Overview of the embedded system resource requirements

• Proposal
▫ CABI (CPU Accounting and Blocking Interfaces)

This can effectively control the CPU consumption of a process or
processes

▫ Priority boost approach
It provides CPU Reservation especially for time-sharing application

• Demonstration
▫ Penguin will show you how our system control the applications

Thank you!

Source and Documentations

• Patch release
▫ Kernel 2.4

ppc, sh, mips, arm, x86
▫ Kernel 2.6 :

sh, mips, arm

• Source and example applications
▫ Sourceforge

JP: http://www.sourceforge.net/cabi/
US: http://sourceforge.jp/

▫ Emblix
http://www.emblix.org

• Documentations
▫ Specification
▫ TEST specification

Sourceforge

• Papers
▫ Accounting System: A Fine-Grained CPU Resource

Protection Mechanism for Embedded System. 9th
IEEE ISORC, April 2006.

▫ Design and Implementation of Accounting System
for Information Appliances. EUC, December 2005.

