CABI (CPU Accounting and Blocking Interfaces)
CPU Resource Management System in Embedded Linux

Linux Symposium
BOF

2006/8/1

Midori Sugayal, Tohru Naojiri2, Takaaki Kasugas3, Takeharu Kato
Waseda Universityl, Hitachi?, Lineo Solutions®

doly @dcl.info.waseda.ac.jp

Linux Symposium BOF 2006/8/1

Requirements for embedded system

» Advanced embedded system
= Expansion of application field
+ Complication GUI, Network
= More complicated, grow up code sizes
- Car navigation system, cellular telephone, digital TV

» The requirements of embedded system

e .
(= Real-time o
+ Multimedia applications
+ In order to process video, audio streams, it needs soft real-time control.
- Even in overload condition, predictable control is necessary for them.
o Responsweness
+ Key inputs
- Even if the multimedia applications are running in the foreground, the
. _responsiveness is required.
= Avoid CPU occupation
- Real-time applications
+ In case of the download, the programs would be buggy or malicious,
they will use up the whole system resources,

- Resource protection mechanism is needed especially for real-time
N applications

. Appropriate CPU resource management system is needed

<#>

Linux Scheduling policies

Linux Symposium BOF

policy contents priorities

Real-time SCHED_FIFO First in first out 0-99
SCHED_RR Round robin

Time-sharing SCHED_OTHER | Time-sharing 100-139

Real-time process

100-139

0-99
USER_PRIO
Real-time
MAX_PRIO
140
100
OTHERS
Time-sharing
139

Time-sharing process

Real-time (static priority)
+ Static Priority (POSIX 1003.1b)

Time-sharing (dynamic priority)

+ Atregular time interval (time slice)

+ Switch processes compared with their priorities
+ Priority is decided by the execution + sleep time
+ Set higher priority to the interactive process

Default policy is timesharing
RT scheduling policies are used with system call.

CABI (CPU Accounting and Blocking Interfaces)

e Purpose

= Provide a framework for the CPU resource management

» Approach

= Control the consumptions of the CPU resources quantitatively
- CPU should be limited for each application or application groups

+ e.g.) The audio video application - 60%
The downloaded applications > 40%

- Design policy
= Fine-grained

- With High Resolution Timer

= Simple

- Easy to use the interfaces and services

= Independent from the scheduler
Not change the Linux scheduler

Applications

Game

Downloaded
Applications

40%

Audio &
Video
Application

60%

<#>

Accounting model

Linux Symposium BOF 2006/8/1

- Two parameters : T (period), C (computation time)
= needed to control the execution time of the application

Computation time

The CPU usage (%) =

100

Period

= Process or process group can not excessively use the CPU resources

than their proportion

S

e.g. C=30ms, T=100ms forcible Preempt

Computation 1

0 30i

100} e

Period (T)

System Architecture

Process Process Process
User

Accounting API Library ‘ Mode
System Call Interfaces Kernel
CABI Mode
| Timer Management Functions i

overload
AO

AO‘

‘ AO H AO t
ﬁ 8 callback hookﬁ E

Tﬁﬁer
ISR

schedule H fork ‘ ‘ exit/ ‘

Process Management System

Linux Kernel

- Interfaces
= Accounting API Library
o System Call Interfaces

- Functions
= Timer Management
= AO Management

- It independent from the kernel
= Only a few hooks
+ Schedule, fork, exit
- ISR

<#>

Linux Symposium BOF 2006/8/1

Guaranteed responsiveness is required for TS applications

« CABI provides a framework for building real-time system
o Set appropriate priorities for real-time applications
- By using algorithms like Rate Monotonic, EDF, with admission control
- Developer can give guarantees for real-time applications

« There are no guarantees for time-sharing applications
= Recently, embedded developers are tend to use the time-sharing
(normal) to develop a new embedded application
- Because no need to adjust their priorities

= Time-sharing applications can’t get responsiveness
If real-time application is running in foreground

- The priorities of time-sharing are always lower than the real-time
applications

o Linux scheduler constraints

- Need a function to set higher priorities and guarantee them to use
some resource

Linux Symposium BOF 2006/8/1

CPU Reservation

- Priority Boost approach
= Time-sharing processes are boosted temporarily to real-time
processes, and minimum resource is reserved
= CPU resource to a particular process which takes care of GUI
= Responsibility of time-sharing process is increased

High Priority
A . o Boost Period .
e High Priority 4) [
Period
Timesharing
Process
o . — —
Low Real-time
Priority Process
| RT Bl ock Nor mal Boost
Time-sharing S e
Process
Real-time Process —
Time-sharing Process a = Jordt
5 Low Priori [
Time-sharing Process b ————— Y |Limitation of o R
Time-sharing Process ¢ === execution time [T e

<#>

Linux Symposium BOF 2006/8/1

Conclusion

- Background
= Overview of the embedded system resource requirements

» Proposal

= CABI (CPU Accounting and Blocking Interfaces)

+ This can effectively control the CPU consumption of a process or
processes

= Priority boost approach
- It provides CPU Reservation especially for time-sharing application

« Demonstration
= Penguin will show you how our system control the applications

Thank you!

Source and Documentations

- Source and example applications * Patch release

= Sourceforge = Kernel 2.4 _
« JP: http://www.sourceforge.net/cabi/ * ppc, sh, mips, arm, x86
- US: http://sourceforge.jp/ = Kernel 2.6

= Emblix + sh, mips, arm

* http://www.emblix.org

- Documentations
= Specification
« TEST specification
- Sourceforge

- Papers

Accounting System: A Fine-Grained CPU Resource
Protection Mechanism for Embedded System. 9th
IEEE ISORC, April 2006.

= Design and Implementation of Accounting System
for Information Appliances. EUC, December 2005.

<#>

