
Graphics Performance Analysis
with FrameRetrace:
A Responsive UI for Apitrace
Mark Janes, November 9, 2017

mark.a.janes@intel.com

2

● Working on Linux platforms since 2004, with a background on
embedded devices.

● Contributed to Intel’s Graphics Performance Analyzers tools for
Android OpenGLES applications 2011-2014.

● Joined Mesa in 2014, working on performance tools and
automation.

About me:

3

● Investigate system bottlenecks frst

– top, gputop, rapl

– 100% GPU utilization with lower CPU utilization indicates
a GPU-bound workload

– TDP limited workloads cause GPU clock rate to fall.

– MESA_DEBUG=perf

GPU Performance Analysis Workfow

4

● CPU Bound workloads have traditional tools

– perf, callgrind, cachegrind, sysprof

● GPU performance analysis has a sparse landscape of Linux tools

– AMD GPU PerfStudio, Nvidia Linux Graphics Debugger, QApiTrace

– Leverage GPU hardware counters to quantify the cost of asynchronous
GPU operations.

– Live experimentation to see the efect on performance.

– Deeply investigate a graphics workload.

GPU Performance Analysis Workfow

5

● Generally hardware-specifc

● Mostly closed source

● Linux support is an afterthought

● Tracing/retracing not reliable

● Low numbers of users

● Mesa support for GPU performance counters

GPU Tools stumbling blocks

6

● Widely used and high quality trace/retrace

● https://github.com/janesma/apitrace

● Cross-platform: Linux and Windows

● Hardware agnostic: Support for Intel, AMD. More to come.

● Upstream GPU Counter support in Mesa and Kernel for Haswell and
later.

● Leveraged by Intel Mesa team to identify and fx several
performance issues in i965.

FrameRetrace: frame analysis based on ApiTrace

7

● GPU Metrics for each render

● Render target visualization and experiments

● Api log

● Batch disassembly

● Shader analysis, live editing, and assembly

● Uniform constant display and live editing

● Render experiments

● State display and live editing

FrameRetrace: frame analysis based on ApiTrace

8

Demo

9

● Windows support provides important leverage for open source driver teams seeking to
fnd Mesa performance gaps.

● Proposed features:

– Display texture state, with mip clamp experiment

– Display geometry mesh

– Depth bufer visualization

– Overdraw / hotspot rendertarget visualization

– UI improvements

– Support for more hardware

– Android support

Other features

10

● Currently a one-person project, with help

– Thanks to Laura Ekstrand, Robert Bragg, Lionel Landerwelin, Eero
Taminen, Pekka Jylhä-Ollila

● Experiments require intricate state tracking

● Some workloads do not have single-frame run loops

Caveats

● FrameRetrace has been enhanced to support Intel’s on-die AMD GPUs
– GPUTime, GPUBusy, TessellatorBusy, HSBusy, DSBusy, GSBusy, PSBusy, CSBusy, VSVerticesIn, HSPatches,

HSVALUInstCount, HSSALUInstCount, HSVALUBusy, HSSALUBusy, DSVerticesIn, GSPrimsIn, GSVerticesOut,
GSVALUInstCount, GSSALUInstCount, GSVALUBusy, GSSALUBusy, PrimitivesIn, ClippedPrims, PAStalledOnRasterizer,
PSPixelsOut, PSExportStalls, PSVALUInstCount, PSSALUInstCount, PSVALUBusy, PSSALUBusy, CSThreadGroups,
CSWavefronts, CSThreads, CSVALUInsts, CSVALUUtilization, CSSALUInsts, CSVFetchInsts, CSSFetchInsts,
CSVWriteInsts, CSFlatVMemInsts, CSVALUBusy, CSSALUBusy, CSMemUnitBusy, CSMemUnitStalled, CSFetchSize,
CSWriteSize, CSCacheHit, CSWriteUnitStalled, CSGDSInsts, CSLDSInsts, CSFlatLDSInsts, CSALUStalledByLDS,
CSLDSBankConfict, TexUnitBusy, TexTriFilteringPct, TexVolFilteringPct, DepthStencilTestBusy, HiZTilesAccepted,
PreZTilesDetailCulled, HiZQuadsCulled, PostZQuads, PreZSamplesPassing, PreZSamplesFailingS,
PreZSamplesFailingZ, PostZSamplesPassing, PostZSamplesFailingS, PostZSamplesFailingZ, ZUnitStalled,
CBMemRead, CBMemWritten, CBSlowPixelPct

● AMD does not meaningfully implement their own metrics extension, and
requires the GPA library to produce data.

● Raspberry Pi and Nouveau supports AMD’s extension

AMD_performance_monitor support

GPUTop demo

● New UI built on top of ImGui

– Simplifes build and deployment

– System-wide & per-context metrics graphs

– Text collection of GPU metrics

– (in progress) timeline of trace events

Questions?

13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

