Ubuntu on ARM: Improvements and Optimizations Done by Linaro

February 15th,
Ricardo Salveti,
rsalveti@linaro.org

2012 Embedded Linux Conference
Topics

- Ubuntu on ARM
- Problems with ARM support at Ubuntu
- Linaro
- Developer Platform
- Why Ubuntu?
- Improvements done over past 2 years
- Future Development
Ubuntu on ARM: Early Days (1/2)

- Started around 2008, in collaboration with ARM
- Derived from Debian
- Modifications to better support faster devices
 - Initial support for ARMv5
- First release: Ubuntu Jaunty Jackalope (9.04)
 - Supporting Freescale iMX51
 - Targets: internet tablets and netbooks
 - Support for native builds only
 - Lot of time building and fixing the packages at the archive
Second release: Ubuntu Karmic Koala (9.10)
- Support for Marvell Armada
- ARMv6 with VFP

Third release: Ubuntu Lucid Lynx (10.04)
- Additional support for Omap 3 (Beagleboard)
- ARMv7, VFP and Thumb 2 (NEON in a few libraries, with run time detection, not by default)
- Huge amount of work fixing and porting packages to be compatible with Thumb 2
- Netbook Edition (EFL-based interface)
Problems with ARM support at Ubuntu (1/2)

- Different images for different devices:
 - Images not produced by architecture/ABI, as done for x86
 - Huge amount of work maintaining all BSP kernel trees
 - Each board had its own kernel tree, locked at a specific version
 - Hard to improve kernel upstream support, lot of development needed

- Hard to work with Embedded developers:
 - Lack of focus and lack of good hardware to use
Problems with ARM support at Ubuntu (2/2)

- Lack of support for cross compilers
- No easy way to cross build packages
- Lot of development needed for basic enablement:
 - Boot Loader (sw bootloader, redboot, u-boot, etc)
 - Kernel (integrating BSP kernel, forward porting, etc)
 - Integration of binary blobs and hardware acceleration support
 - Toolchain fixes
- Second Class Citizen
Bootstrap

- Announced at Computex in June, 2010
- Focus on fixing the Linux on ARM ecosystem:
 - Avoid fragmentation
 - Work towards common solutions and architectures
 - Upstream enablement and development
 - Common development and optimization across ARM revisions (initial focus on ARMv7 Cortex A8/9)
 - Single point for embedded developers using, enabling and supporting newer ARM targets/boards
Reference Platform for Developers

- Need of a reference platform for Linaro
- Goals:
 - Integrate Linaro outcome from the different working groups for people to consume, validate and test
 - Platform to be used at the validation lab (LAVA)
 - Reference for both internal and external developers
 - Demonstrate the benefits of the work done by Linaro
- Initial focus on a Generic Linux platform
 - Easier for developers
 - Common across other architectures
Why Ubuntu?

- Good support for ARM already:
 - Support for the newer ARM devices (ARMv7)
 - Thousands of packages available at the archive
 - Optimized for ARMv7 Cortex A8/9 and Thumb 2
- Great relationship with ARM Ltd.
- Most popular Linux Distribution
- Key developers assigned to Linaro from start
- Always focusing on latest and greatest hardware available
Initial platform goals for Linaro

- Extend the support for additional platforms
 - Main platforms from Linaro Partners
- Enable Cross Compilation support
- Multimedia optimizations for ARM (Neon)
- Full enablement:
 - Device drivers
 - 3D acceleration and OpenGL ES2.0 support
 - Hardware video decode
- Compiler Optimizations
Work done over past 2 years

- Ubuntu Linaro Evaluation Builds
 - Based on the latest Ubuntu release available
 - Released monthly
 - Experimental platform before going upstream
- Engineering:
 - Toolchain
 - Graphics
 - Multimedia
 - Distro's Core
 - Kernel and Boot-Loader
Improvements: Toolchain

- **Native Toolchain:**
 - Ubuntu now includes Linaro's toolchain as default
 - Changes applied for all architectures
 - Contains Linaro Toolchain monthly releases until FF
 - After FF Linaro helps with bugfixes and backporting

- **Cross Toolchain:**
 - Packages for cross toolchain now included by default
 - Based on the native compiler (with Linaro sauce)
 - No need for external cross toolchain
Improvements: Graphics

- OpenGL ES 2.0 enabled as the default OpenGL option for ARM
 - Support for the main toolkit libraries, such as Qt, EFL and others
- Porting for OpenGL ES2.0:
 - Mesa utils
 - Unity 3D
 - Nux
 - Compiz
 - Benchmarks
Improvements: Multimedia

- libjpeg-turbo as the default libjpeg provider
- Alsa UCM:
 - Support for Pandaboard at Maverick/Oneiric
 - iMX53 quickstart at LEB
- Improved support for DRM on Omap
- Definition of a common eglImage extension in progress:
 - Support for XBMC and Ubuntu TV at the Panda LEB
Improvements: Distro's Core

- Multi-Arch
 - Main solution for cross package compilation

- Cross Buildd

- Ubuntu LEB:
 - Hardware Pack

- ARM Porting:
 - Fixes and porting for issues only affecting ARM

- ARMHF
Improvements: Kernel and Boot Loader

- **Improved Kernel support for ARM targets:**
 - Omap 4 flavour based on TI's Landing Team tree
 - iMX53 package provided from the Freescale LT tree
 - Support for Snowball, Origen and iMX6 at the LEB

- **Boot Loader:** U-Boot-Linaro
 - X-Loader replacement with U-Boot's SPL
 - USB Booting with U-Boot's SPL for Pandaboard
 - PXE and TFTP support
 - Additional boards: iMX6, Origen, Snowball
Future Development (1/2)

- Finish porting and enabling ARMHF
 - Only ARMHF should be supported for Ubuntu Precise Pangolin (12.04)
- Ubuntu ARM for Servers
 - UEFI
 - Grub 2
- big.LITTLE
- ARMv8 64bit
Future Development (2/2)

- Continuous Integration:
 - Components available as git trees
 - Daily builds
 - Validation with LAVA
 - Test report for boards and targets

- New Requirements:
 - Ubuntu TV/Tablet/Car/Phone
 - Optimizations at the toolkit and application level

- Single zImage to rule them all
Thanks!

Ricardo Salveti,
rsalveti@linaro.org

IRC: rsalveti